98%
921
2 minutes
20
Silicon nanowire field-effect transistors (SiNW-FETs) have been demonstrated as a highly sensitive platform for label-free detection of a variety of biological and chemical entities. However, detecting signal from immunoassays by nano-FETs is severely hindered by the distribution of different charged groups of targeted entities, their binding orientation, and distances to the surface of the FET. Aptamers have been widely applied as a recognition element for plentiful biosensors because of small molecular sizes and moderate to high specific binding affinity with different types of molecules. In this study, we propose an effective approach to enhance the electrical responses of both direct (6×-histidine) and sandwich (amyloid β 1-42) immunoassays in SiNW-FETs with R18, a highly negative charged RNA aptamer against rabbit immunoglobulin G (IgG). Empirical results presented that the immunosensors targeted with R18 expressed a significantly stabilized and amplified signal compared to the ones without this aptamer. The research outcome provides applicability of the highly negative charged aptamer as a bioamplifier for immunoassays by FETs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756515 | PMC |
http://dx.doi.org/10.1021/acsomega.9b01264 | DOI Listing |
ACS Sens
September 2025
School of Physics and Electric Engineering, Linyi University, Linyi 276000, China.
In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.
View Article and Find Full Text PDFSmall Sci
September 2025
Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.
View Article and Find Full Text PDFACS Nano
September 2025
School of Microelectronics, Hefei University of Technology, Hefei 230009, China.
Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.
View Article and Find Full Text PDFNanotechnology
September 2025
State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.
Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.
View Article and Find Full Text PDFNanophotonics
August 2025
Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate.
View Article and Find Full Text PDF