98%
921
2 minutes
20
Cell mechanical properties have been identified to characterize cells pathologic states. Here, we report our work on high-throughput mechanical phenotyping of androgen-sensitive and non-sensitive human prostate cancer cell lines based on a morphological rheological microfluidic method. The theory for extracting cells' elastic modulus from their deformation and area, and the used experimental parameters were analyzed. The mechanical properties of three types of prostate cancer cells lines with different sensitivity to androgen including LNCaP, DU145, and PC3 were quantified. The result shows that LNCaP cell was the softest, DU145 was the second softest, and PC3 was the stiffest. Furthermore, atomic force microscopy (AFM) was used to verify the effectiveness of this high-throughput morphological rheological method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780375 | PMC |
http://dx.doi.org/10.3390/mi10090602 | DOI Listing |
JAMA Netw Open
September 2025
Department of Urology, Center for Health Outcomes Research and Dissemination, University of Washington, Seattle.
Importance: Black individuals have a twofold higher rate of prostate cancer death in the US compared with the average population with prostate cancer. Few guidelines support race-conscious screening practices among at-risk Black individuals.
Objective: To examine structural factors that facilitate or impede access to prostate cancer screening among Black individuals in the US.
J Oncol Pharm Pract
September 2025
Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.
Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.
View Article and Find Full Text PDFEndocr Relat Cancer
September 2025
Department of Molecular, Cell and Developmental Biology, University of California Los Angeles;Los Angeles, CA 90095.
Age is a major risk factor for a range of diseases including prostate cancer. Understanding how age influences the susceptibility of normal prostate epithelial cells to cancer initiation is complicated by the fact that aging affects all tissues in the body. Assessing how various aging mechanisms influence the prostate epithelium is a necessary step to determine the critical factors associated with aging that increase prostate cancer risk.
View Article and Find Full Text PDFEndocr Connect
September 2025
Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.
Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.