Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Subarachnoid hemorrhage (SAH) is a devastating disease. Neuronal death is an important pathophysiology in the acute phase of SAH, but the histopathological features of dying neurons have been poorly studied. Using several staining methods including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and microtubule-associated protein 2 (MAP-2) double immunolabeling, we investigated the morphological changes of nucleus and cytoskeleton in neurons and sought susceptible areas to neuronal death in filament perforation SAH mice under light microscope. TUNEL and MAP-2 double immunolabeling clearly showed morphological features of shrunken cytoplasm and sometimes curl-like fibers in dying neurons, besides nuclear abnormalities. More dying neurons were detected in the moderate SAH group than in the mild SAH group, and the temporal base cortex was the most susceptible area to neuronal death with deoxyribonucleic acid (DNA) damage among the cerebral cortices and hippocampus at 24 hr after SAH (<0.01, ANOVA). Lesser hippocampal neuronal death was observed at 24 hr, but neuronal death was significantly increased in the CA1 region at 7 days after SAH (<0.05, unpaired test). Using TUNEL and MAP-2 double immunolabeling, morphological features of not only the nucleus but also the cytoplasm in post-SAH neuronal death with DNA damage can be observed in detail under light microscope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882068PMC
http://dx.doi.org/10.1369/0022155419878181DOI Listing

Publication Analysis

Top Keywords

neuronal death
16
dying neurons
12
subarachnoid hemorrhage
8
map-2 double
8
double immunolabeling
8
sah group
8
sah
6
morphological characteristics
4
neuronal
4
characteristics neuronal
4

Similar Publications

Background: Epilepsy, a significant neurological condition marked by the occurrence of repeated seizures, continues to pose a substantial health challenge. Previous studies have indicated that Dipeptidyl Peptidase-4 (DPP4) inhibitors may possess antiepileptic properties. Ferroptosis, a newly discovered type of programmed cell death, has recently surfaced as a promising therapeutic target in the management of epilepsy.

View Article and Find Full Text PDF

Aim: Neuronal cell death plays a critical role in the development of neurological disorders associated with aging. This study aimed to evaluate the beneficial effects of heat-ki lled lactic acid bacteria (hkLAB) on neuroblastoma cells and .

Materials And Methods: We pretreated heat-killed CNU384 (hkCNU384), .

View Article and Find Full Text PDF

Background/aim: Tau protein, which is crucial for sustaining the cytoskeletal network by assisting microtubule construction, contributes significantly to the pathophysiology of Alzheimer's disease (AD). The hyperphosphorylation of tau causes it to detach from microtubules (MTs), leading to the formation of neurofibrillary tangles (NFTs) in neurons, which ultimately results in cell death. Thionine (TH), a cationic phenothiazine-structured compound, has been the topic of extensive research due to its interesting physicochemical properties.

View Article and Find Full Text PDF

Network Pharmacology of miR-146a-5p as a Potential Anti-Inflammatory Agent in Preventing Alzheimer's Disease.

Curr Alzheimer Res

September 2025

School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia.

Introduction: Alzheimer's disease is expressed as chronic neuroinflammation in the brain, which results in neuronal dysfunction, aberrant protein folding, and declining cognitive abilities. miR-146a-5p is a potent anti-inflammatory agent that can be used to treat several inflammatory diseases, as well as promote wound healing. Our research aimed to utilize network pharmacology to elucidate the therapeutic potential of miR-146a-5p in treating Alzheimer's disease using a biocomputational approach.

View Article and Find Full Text PDF

Role of GSK-3 Inhibition in Alzheimer's Disease Therapy.

Curr Alzheimer Res

September 2025

Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia.

A serine/threonine kinase with a wide variety of substrates, Glycogen Synthase Kinase-3 (GSK-3) is widely expressed. GSK-3 is a key player in cell metabolism and signaling, modulating numerous cellular functions and playing significant roles in both healthy and diseased states. The two histopathological features of Alzheimer's disease, the intracellular neurofibrillary tangles composed of hyperphosphorylated tau, and the extracellular senile plaques composed of beta-amyloid, have been linked to GSK-3.

View Article and Find Full Text PDF