98%
921
2 minutes
20
A new method based on work function to analyze the interfacial stability and strength of ceramic-metal composites was proposed in this work. The interfacial work function gradient and interfacial elastic modulus were evaluated experimentally using WC-Co and TiC-Co as the examples. It found that a stable and strongly bonded interface had a gradually changing interfacial work function, while a weak interface exhibited a steep work function changing across the interface. The spatial resolution of the experimental analysis could be down to 10 nm with a high work function sensitivity. First-principles calculations were conducted to analyze the electronic configurations across the interfaces. They revealed the potential distribution across the interfaces in the sub-nano scale. They demonstrated that the interface with a smaller interfacial work function gradient had smaller interface energy and stronger interfacial bonds, and thus the interface was more stable and stronger. The calculation disclosed the mechanism of the experimental observations of the interfacial work function. Both the experimental and theoretical studies confirmed that the interfacial work function gradient could be a measure of the interactions across the interfaces. The effectiveness of the established model was demonstrated by analyzing the stability of thin films at WC/Co interfaces. This study provides a new method to evaluate the interfacial stability and bonding strength for cermets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp04334a | DOI Listing |
Cereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.
Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.
View Article and Find Full Text PDFJ Histotechnol
September 2025
3d.FAB, Université Claude Bernard Lyon 1, CNRS, INSA, CPE-Lyon, Villeurbanne, France.
Histological preparation paraffin embedding is the gold standard method for evaluating tissue structure and composition, whether it is originated from biopsy or engineered . Quite often, deformation and shrinkage occur during the histological preparation, which are difficult to predict and qualify. The present study investigates the morphometric changes in bioprinted hydrogels composed of alginate and gelatine, common tissue engineering materials, focusing on three morphologies: full slabs, porous slabs, and porous cubes.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFJ Biomol NMR
September 2025
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.
View Article and Find Full Text PDF