98%
921
2 minutes
20
The amyloid formation of human islet amyloid polypeptide (hIAPP)-an intrinsically disordered peptide, is associated with type II diabetes. Cellular membranes, especially those composed of negatively-charged lipids, accelerate the hIAPP amyloid fibrillation, and their integrity is disrupted during the aggregation process, leading to cell apoptosis. However, the underlying molecular mechanism is not well understood. Herein, we investigated the conformational dynamics during the interactions of hIAPP monomer with POPG membrane bilayer, by carrying out μs-long all-atom molecular dynamics simulations. Starting from the metastable coiled conformations in water, hIAPP monomers tend to adopt transient α-helical and β-sheet structures when adsorbing to the membrane surface. The amphiphilic N-terminal region further inserts into the membrane interior and is located at the lipid head-tail interface, mainly in turn and α-helical structures. In contrast, the β-hairpin structures reside on the membrane surface without insertion, and expand laterally with the hydrophobic residues exposed to the solvent. Moreover, the adsorption and insertion of hIAPP monomers induce two distinct local membrane deformations: (1) the hIAPP adsorption on the membrane surface mainly causes membrane bending; (2) the insertion of both turns and α-helices synchronizes with the formation of hydrophobic defects on the POPG membrane, leading to stronger membrane stretching and a longer coherence length of membrane thinning. Based on the structural and dynamical results, we propose that β-hairpin structures may be a precursor for the fibrillation on the membrane surface due to the flat geometry and hydrophobic regions exposed to solvent, while N-terminal amphiphilic α-helices would facilitate hIAPP assembling into toxic oligomers inside the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp03151k | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.
Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada. Electronic address:
In 1987 Seelig and colleagues proposed that the phosphocholine headgroup of phosphatidylcholine behaved as a universal sensor of surface electrostatic charge, both cationic and anionic, in lipid bilayers (J. Seelig, P.M.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna, Austria.. Electronic address:
Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark. Electronic address:
Electric fields significantly influence bacterial cells by altering their physiology, membrane properties, membrane potential, and permeability, as well as their metabolism and mobility. These interactions result in observable changes in growth rates, cellular morphology, and gene expression. This review provides a comprehensive examination of the effects of electric fields on bacterial cells, focusing specifically on mechanisms such as electro-stimulation, electroporation, electrophoresis, and dielectrophoresis.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. Electronic address:
Glycolipids are key structural and functional components of biological membranes, yet their interfacial hydration behavior remains poorly understood. Here, we use vibrational heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to probe the molecular structure of the air-water interface formed by monolayers of ohmline, a glycolipid bearing a lactose headgroup and carrying no formal charge. Upon electrolyte addition, we observe a striking reorientation of interfacial water and a reversal of the HD-SFG signal, indicative of apparent surface charging by an otherwise neutral headgroup.
View Article and Find Full Text PDF