Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oomycete and fungal pathogens, mainly and species, are notorious causal agents of huge economic losses and environmental damages. For instance, , , and cause significant losses in nurseries and in forest ecosystems. Chemical treatments, while harmful to the environment and human health, have been proved to have little or no impact on these species. Recently, biocontrol bacterial species were used to cope with these pathogens and have shown promising prospects towards sustainable and eco-friendly agricultural practices. Olive trees prone to and disease outbreaks are suitable for habitat-adapted symbiotic strategies, to recover oomycetes and fungal pathogen biocontrol agents. Using this strategy, we showed that olive trees-associated microbiome represents a valuable source for microorganisms, promoting plant growth and healthy benefits in addition to being biocontrol agents against oomycete and fungal diseases. Isolation, characterization and screening of root microbiome of olive trees against numerous and other fungal pathogens have led to the identification of the OEE1, with plant growth promotion (PGP) abilities and strong activity against major oomycete and fungal pathogens. Phylogenomic analysis of the strain OEE1 showed that suffers taxonomic imprecision that blurs species delimitation, impacting their biofertilizers' practical use. Genome mining of several strains available in the GenBank have highlighted a wide array of plant growth promoting rhizobacteria (PGPR) features, metals and antibiotics resistance and the degradation ability of phytotoxic aromatic compounds. Strain OEE1 harbours a large repertoire of secreted and volatile secondary metabolites. Rarefaction analysis of secondary metabolites richness in the genomes, unambiguously documented new secondary metabolites from ongoing genome sequencing efforts that warrants more efforts in order to assess the huge diversity in the species. Comparative genomics indicated that harbours a core genome endowed with PGP features and accessory genome encoding diverse secondary metabolites. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of OEE1 Volatile Organic Compounds (VOCs) and Liquid Chromatography High Resolution Mas Spectrometry (LC-HRMS) analysis of secondary metabolites identified numerous molecules with PGP abilities that are known to interfere with pathogen development. Moreover, OEE1 proved effective in protecting olive trees against in greenhouse experiments and are able to inhabit olive tree roots. Our strategy provides an effective means for isolation of biocontrol agents against recalcitrant pathogens. Their genomic analysis provides necessary clues towards their efficient implementation as biofertilizers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780883PMC
http://dx.doi.org/10.3390/microorganisms7090314DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
20
oomycete fungal
16
fungal pathogens
12
olive trees
12
biocontrol agents
12
plant growth
12
harbours large
8
large repertoire
8
repertoire secreted
8
secreted volatile
8

Similar Publications

Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.

View Article and Find Full Text PDF

Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.

View Article and Find Full Text PDF

Adaptive glutathione S-transferase genes induced by DIMBOA as potential RNAi targets against Ostrinia furnacalis.

Pestic Biochem Physiol

November 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, He

The arms race between insect-resistant secondary metabolites in plants and the detoxification genes of their natural enemies reveals the intricate co-evolutionary dynamics between the Asian corn borer (Ostrinia furnacalis) and its host plant, maize, and provides a new perspective for the potential control of pests. In this study, ELISA and transcriptome revealed that the glutathione S-transferases were involved in the detoxification of O. furnacalis to maize secondary metabolite 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA).

View Article and Find Full Text PDF

Potent β-glucuronidase inhibition by brown algae Ecklonia cava secondary metabolites: Structural characterization, enzyme kinetics, and computational simulations.

Int J Biol Macromol

September 2025

Department of Biology Education, Teachers College, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Advanced Bioconvergence, BK21 FOUR KNU Center for Innovative One-Health Leaders, Kyungpook National University, Daegu, 41566, Republic of Korea. Electronic address: syy@kn

The chemical profile of brown algae Ecklonia cava was comprehensively analyzed using ultra-high-performance liquid chromatography coupled with a Q-Exactive Orbitrap mass spectrometer and GNPS molecular networking, identifying 33 components, including 27 oligomeric phloroglucinols. Among these, 10 compounds with analogous structural segments were evaluated for β-glucuronidase inhibitory activity, revealing potent inhibition by eckol, phlorofucofuroeckol A (PFF-A), dieckol, 2-phloroeckol, dioxinodehydroeckol (DHE), 8,8'-bieckol, and 6,8'-bieckol, with IC values ranging from 0.3 to 30.

View Article and Find Full Text PDF

Comprehensive LC-MS/MS and HPLC-based profiling of secondary metabolites in Aster incisus from diverse cultivation regions.

J Chromatogr B Analyt Technol Biomed Life Sci

September 2025

Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea. Electronic address:

Aster incisus is a perennial herbaceous plant belonging to the Asteraceae family, known for its pharmacologically active secondary metabolites. In this study, we conducted a comparative profiling and quantification of secondary metabolites in A. incisus extracts cultivated in two regions, Eumseong (AIE) and Inje (AII), using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography with a variable wavelength detector (HPLC/VW).

View Article and Find Full Text PDF