98%
921
2 minutes
20
Aster incisus is a perennial herbaceous plant belonging to the Asteraceae family, known for its pharmacologically active secondary metabolites. In this study, we conducted a comparative profiling and quantification of secondary metabolites in A. incisus extracts cultivated in two regions, Eumseong (AIE) and Inje (AII), using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography with a variable wavelength detector (HPLC/VW). LC-MS/MS analysis conducted in negative ion mode enabled the identification of 13 secondary metabolites, including key flavonoids and phenolic acids such as chlorogenic acid, narcissoside, isorhamnetin, and rutin. HPLC quantification revealed distinct compositional differences between the AIE and AII samples. The AII extract contained significantly higher levels of chlorogenic acid (35.97 mg/g extract), narcissoside (8.08 mg/g extract), and isorhamnetin 3-galactoside (23.79 mg/g extract), while the AIE extract exhibited greater concentrations of protocatechuic acid (0.77 mg/g extract), rutin (2.08 mg/g extract), and hirsutrin (2.05 mg/g extract). Isorhamnetin was detected exclusively in AII (0.24 mg/g extract), and a number of other compounds were present only in trace amounts in both samples. These results suggest that environmental and geographical factors play a significant role in the biosynthesis of phenolic and flavonoid compounds in A. incisus. These findings provide critical chemotaxonomic and pharmacological insights into the region-dependent accumulation of bioactive metabolites, highlighting their potential relevance in drug discovery and therapeutic formulation based on natural products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2025.124787 | DOI Listing |
JCI Insight
September 2025
Division of Nephrology, Boston University Chobanian & Avedisian School of Medicine, Boston, United States of America.
Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.
Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.
J Chem Ecol
September 2025
Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713 104, West Bengal, India.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important herbivorous pest of bottle gourd. We studied the development, reproduction and life table parameters of H. armigera to assess the resistance of eight bottle gourd cultivars, and performed biochemical analysis when H.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.
The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.
View Article and Find Full Text PDF