Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: Studies in a transgenic mouse model of Alzheimer's disease.

Brain Behav Immun

School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Hong Kong Institute of

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Isorhynchophylline (IRN) has been demonstrated to have distinct anti-Alzheimer's disease (AD) activity in several animal models of AD. In this study, we aimed at evaluating the preventive effect of IRN on the cognitive deficits and amyloid pathology in TgCRND8 mice. Male TgCRND8 mice were administered with IRN (20 or 40 mg/kg) by oral gavage daily for 4 months, followed by assessing the spatial learning and memory functions with the Radial Arm Maze (RAM) test. Brain tissues were determined immunohistochemically or biochemically for changes in amyloid pathology, tau hyperphosphorylation and neuroinflammation. Our results revealed that IRN (40 mg/kg) significantly ameliorated cognitive deficits in TgCRND8 mice. In addition, IRN (40 mg/kg) markedly reduced the levels of Aβ, Aβ and tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and IL-1β, and modulated the amyloid precursor protein (APP) processing and phosphorylation by altering the protein expressions of β-site APP cleaving enzyme-1 (BACE-1), phosphorylated APP (Thr668), presenilin-1 (PS-1) and anterior pharynx-defective-1 (APH-1), as well as insulin degrading enzyme (IDE), a major Aβ-degrading enzyme. IRN was also found to inhibit the phosphorylation of tau at the sites of Thr205 and Ser396. Immunofluorescence showed that IRN reduced the Aβ deposition, and suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the cerebral cortex and hippocampus of TgCRND8 mice. Furthermore, IRN was able to attenuate the ratios of p-c-Jun/c-Jun and p-JNK/JNK in the brains of TgCRND8 mice. IRN also showed marked inhibitory effect on JNK signaling pathway in the Aβ-treated rat primary hippocampus neurons. We conclude that IRN improves cognitive impairment in TgCRND8 transgenic mice via reducing Aβ generation and deposition, tau hyperphosphorylation and neuroinflammation through inhibiting the activation of JNK signaling pathway, and has good potential for further development into pharmacological treatment for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2019.08.194DOI Listing

Publication Analysis

Top Keywords

tgcrnd8 mice
20
amyloid pathology
12
tau hyperphosphorylation
12
hyperphosphorylation neuroinflammation
12
irn 40 mg/kg
12
irn
10
cognitive impairment
8
pathology tau
8
cognitive deficits
8
mice irn
8

Similar Publications

Alzheimer's disease (AD) is the primary cause of dementia in the elderly. However, effective therapies that modify the disease process in AD remain elusive. Far-infrared radiation (FIR) is commonly utilized as a complementary treatment a range of disease, for example insomnia and rheumatoid arthritis.

View Article and Find Full Text PDF

Temporal impact of sepsis on Alzheimer's disease pathology and neuroinflammation.

Prog Neurobiol

July 2025

Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Bra

Epidemiological evidence has revealed an associative link between sepsis survivorship and increased risk of dementia, particularly Alzheimer's disease (AD). Paradoxically, population studies show females are less susceptible to sepsis but more vulnerable to post-sepsis dementia. Here, we examined the temporal impacts of sepsis in the context of AD by using an AD-amyloidosis model (TgCRND8) and their wild-type littermates and assessing outcomes at 7 days and 3 months post-sepsis in male and female mice.

View Article and Find Full Text PDF

Multiple lines of evidence indicate that immune signaling can impact the pathological progression in Alzheimer's disease (AD), including amyloid deposition, tau aggregation, synaptic pathology and neurodegenerative trajectory. In earlier studies, we reported that intracerebral expression of the anti-inflammatory cytokines, Interleukin-10 (Il10) and Interleukin-4 (Il4), increased amyloid β (Aβ) burden in TgCRND8 mice, a preclinical model of AD-type amyloidosis. As both Interleukin-10 receptor (IL10R) and Interleukin-4 receptor (IL4R) are upregulated in an age-progressive manner in rodent models of AD and in specific regions of human AD brains, we hypothesized that a decoy receptor strategy specifically targeting Il10 and Il4 signaling could have a disease-modifying effect.

View Article and Find Full Text PDF

Amyloid-beta (Aβ) aggregation, phosphorylated tau accumulation and neuroinflammation are considered as three hallmarks of Alzheimer's disease (AD). Rhynchophylline (RN), the major alkaloid of a Chinese medicinal plant Uncaria rhynchophylla, has been shown to possess potent anti-AD effects. This study explored the effects of RN on Aβ pathology, tauopathy, and neuroinflammation using three AD mouse models, including TgCRND8, 3×Tg-AD, and 5×FAD, with RN treatment lasting for 4, 6, and 6 months, respectively, followed by behavioral tests and biological assays.

View Article and Find Full Text PDF

The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.

View Article and Find Full Text PDF