98%
921
2 minutes
20
Isorhynchophylline (IRN) has been demonstrated to have distinct anti-Alzheimer's disease (AD) activity in several animal models of AD. In this study, we aimed at evaluating the preventive effect of IRN on the cognitive deficits and amyloid pathology in TgCRND8 mice. Male TgCRND8 mice were administered with IRN (20 or 40 mg/kg) by oral gavage daily for 4 months, followed by assessing the spatial learning and memory functions with the Radial Arm Maze (RAM) test. Brain tissues were determined immunohistochemically or biochemically for changes in amyloid pathology, tau hyperphosphorylation and neuroinflammation. Our results revealed that IRN (40 mg/kg) significantly ameliorated cognitive deficits in TgCRND8 mice. In addition, IRN (40 mg/kg) markedly reduced the levels of Aβ, Aβ and tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and IL-1β, and modulated the amyloid precursor protein (APP) processing and phosphorylation by altering the protein expressions of β-site APP cleaving enzyme-1 (BACE-1), phosphorylated APP (Thr668), presenilin-1 (PS-1) and anterior pharynx-defective-1 (APH-1), as well as insulin degrading enzyme (IDE), a major Aβ-degrading enzyme. IRN was also found to inhibit the phosphorylation of tau at the sites of Thr205 and Ser396. Immunofluorescence showed that IRN reduced the Aβ deposition, and suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the cerebral cortex and hippocampus of TgCRND8 mice. Furthermore, IRN was able to attenuate the ratios of p-c-Jun/c-Jun and p-JNK/JNK in the brains of TgCRND8 mice. IRN also showed marked inhibitory effect on JNK signaling pathway in the Aβ-treated rat primary hippocampus neurons. We conclude that IRN improves cognitive impairment in TgCRND8 transgenic mice via reducing Aβ generation and deposition, tau hyperphosphorylation and neuroinflammation through inhibiting the activation of JNK signaling pathway, and has good potential for further development into pharmacological treatment for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2019.08.194 | DOI Listing |
Neuromolecular Med
May 2025
School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
Alzheimer's disease (AD) is the primary cause of dementia in the elderly. However, effective therapies that modify the disease process in AD remain elusive. Far-infrared radiation (FIR) is commonly utilized as a complementary treatment a range of disease, for example insomnia and rheumatoid arthritis.
View Article and Find Full Text PDFProg Neurobiol
July 2025
Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Bra
Epidemiological evidence has revealed an associative link between sepsis survivorship and increased risk of dementia, particularly Alzheimer's disease (AD). Paradoxically, population studies show females are less susceptible to sepsis but more vulnerable to post-sepsis dementia. Here, we examined the temporal impacts of sepsis in the context of AD by using an AD-amyloidosis model (TgCRND8) and their wild-type littermates and assessing outcomes at 7 days and 3 months post-sepsis in male and female mice.
View Article and Find Full Text PDFActa Neuropathol Commun
March 2025
Department of Neuroscience, University of Florida, Gainesville, FL-32610, USA.
Multiple lines of evidence indicate that immune signaling can impact the pathological progression in Alzheimer's disease (AD), including amyloid deposition, tau aggregation, synaptic pathology and neurodegenerative trajectory. In earlier studies, we reported that intracerebral expression of the anti-inflammatory cytokines, Interleukin-10 (Il10) and Interleukin-4 (Il4), increased amyloid β (Aβ) burden in TgCRND8 mice, a preclinical model of AD-type amyloidosis. As both Interleukin-10 receptor (IL10R) and Interleukin-4 receptor (IL4R) are upregulated in an age-progressive manner in rodent models of AD and in specific regions of human AD brains, we hypothesized that a decoy receptor strategy specifically targeting Il10 and Il4 signaling could have a disease-modifying effect.
View Article and Find Full Text PDFActa Pharmacol Sin
July 2025
School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
Amyloid-beta (Aβ) aggregation, phosphorylated tau accumulation and neuroinflammation are considered as three hallmarks of Alzheimer's disease (AD). Rhynchophylline (RN), the major alkaloid of a Chinese medicinal plant Uncaria rhynchophylla, has been shown to possess potent anti-AD effects. This study explored the effects of RN on Aβ pathology, tauopathy, and neuroinflammation using three AD mouse models, including TgCRND8, 3×Tg-AD, and 5×FAD, with RN treatment lasting for 4, 6, and 6 months, respectively, followed by behavioral tests and biological assays.
View Article and Find Full Text PDFBiomaterials
July 2025
144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. Electronic address:
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.
View Article and Find Full Text PDF