Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer is a main cause of disease and death for women globally. Because of the limitations of traditional mammography and ultrasonography, magnetic resonance imaging (MRI) has gradually become an important radiological method for breast cancer assessment over the past decades. MRI is free of the problems related to radiation exposure and provides excellent image resolution and contrast. However, a disadvantage is the injection of contrast agent, which is toxic for some patients (such as patients with chronic renal disease or pregnant and lactating women). Recent findings of gadolinium deposits in the brain are also a concern. To address these issues, this paper develops an intravoxel incoherent motion- (IVIM-) MRI-based histogram analysis approach, which takes advantage of several hyperspectral techniques, such as the band expansion process (BEP), to expand a multispectral image to hyperspectral images and create an automatic target generation process (ATGP). After automatically finding suspected targets, further detection was attained by using kernel constrained energy minimization (KCEM). A decision tree and histogram analysis were applied to classify breast tissue via quantitative analysis for detected lesions, which were used to distinguish between three categories of breast tissue: malignant tumors (i.e., central and peripheral zone), cysts, and normal breast tissues. The experimental results demonstrated that the proposed IVIM-MRI-based histogram analysis approach can effectively differentiate between these three breast tissue types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699322PMC
http://dx.doi.org/10.1155/2019/3843295DOI Listing

Publication Analysis

Top Keywords

histogram analysis
12
breast tissue
12
intravoxel incoherent
8
breast cancer
8
analysis approach
8
breast
7
breast tumor
4
tumor detection
4
detection classification
4
classification intravoxel
4

Similar Publications

Objective: This study aims to develop a robust, multi-task deep learning framework that integrates vessel segmentation and radiomic analysis for the automated classification of four retinal conditions- diabetic retinopathy (DR), hypertensive retinopathy (HR), papilledema, and normal fundus-using fundus images.

Materials: AND.

Methods: A total of 2,165 patients from eight medical centers were enrolled.

View Article and Find Full Text PDF

Light adaptive image enhancement for improving visual analysis in intercropping cultivation.

Front Plant Sci

August 2025

Chinese Academy of Agriculture Mechanization Sciences Group Co., Ltd., Beijing, China.

Intercropping maize and soybean with distinct plant heights is a typical practice in diversified cropping systems, where shadows cast by taller maize plants onto soybean rows pose significant challenges for image based recognition. This study conducted experiments throughout the entire soybean-maize intercropping period to address illumination variation. Based on the height difference between crops, solar elevation angle, and light intensity at the top of the soybean canopy, an illumination compensation regression model was developed.

View Article and Find Full Text PDF

Accurate honey bee subspecies identification is vital for biodiversity conservation and pollination resilience, yet current methods face critical limitations. Classical morphometric techniques, reliant on manual wing vein measurements, suffer from subjectivity and poor scalability across hybrid populations, while deep learning approaches demand extensive labeled datasets and exhibit limited interpretability in noisy field conditions. Crucially, existing methods fail to reconcile scalability with the ability to analyze phenotypic gradients in hybrid specimens.

View Article and Find Full Text PDF

Background And Purpose: Accurate stopping-power ratio (SPR) estimation is crucial for proton therapy planning. In brain cancer patients with metal clips, SPR accuracy may be affected by high-density materials and imaging artefacts. Dual-energy CT (DECT)-based methods have been shown to improve SPR accuracy.

View Article and Find Full Text PDF

Background: Advanced diffusion models have been introduced to improve characterization of tissue microstructure in breast cancer assessment.

Purpose: This study aimed to evaluate the diagnostic utility of monoexponential apparent diffusion coefficient (ADC), time-dependent diffusion magnetic resonance imaging (td-dMRI), and the Continuous-Time Random-Walk (CTRW) diffusion model for differentiating breast lesions and predicting Ki-67 expression levels.

Methods: Fifty-three consecutive patients with suspected breast lesions undergoing preoperative MRI were enrolled in this prospective investigation.

View Article and Find Full Text PDF