98%
921
2 minutes
20
Valorisation of the urban plastic waste in high-quality recyclates is an imperative challenge in the new paradigm of the circular economy. In this scenario, a key role in the improvement of the recycling process is exerted by the optimization of waste sorting. In spite of the enormous developments achieved in the field of automated sorting systems, the quest for the reduction of cross-contamination of incompatible polymers as well as a rapid and punctual sorting of the unmatched polymers has not been sufficiently developed. In this paper, we demonstrate that a miniaturized handheld near-infrared (NIR) spectrometer can be used to successfully fingerprint and classify different plastic polymers. The investigated urban plastic waste comprised polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), and poly(styrene) (PS), collected directly in a recycling plastic waste plant, without any kind of sample washing or treatment. The application of unsupervised and supervised chemometric tools such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) on the NIR dataset resulted in a complete classification of the polymer classes. In addition, several kinds of PET (clear, blue, coloured, opaque, and boxes) were correctly classified as PET class, and PE samples with different branching degrees were properly separated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747759 | PMC |
http://dx.doi.org/10.3390/ma12172740 | DOI Listing |
Environ Sci Pollut Res Int
September 2025
Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.
View Article and Find Full Text PDFMinerva Dent Oral Sci
September 2025
Department of Dental Cell Research, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India -
Dental waste, including metal, plastic, and chemical residues, and high energy and water consumption, significantly contribute to environmental degradation. This review highlights the environmental impact of common dental materials and practices, such as amalgam, resin composites, and disposable plastics. The aim is to examine current evidence, emphasizing mercury pollution, microplastic release, and biomedical waste handling.
View Article and Find Full Text PDFWaste Manag Res
September 2025
Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam.
This study investigates plastic food packaging (PFP) recycling symbols in Vietnam through field surveys, questionnaires and statistical and machine-learning models. Results show that 68.2% of shoppers correctly identified the recycling symbol, whereas 87.
View Article and Find Full Text PDFJ Cataract Refract Surg
September 2025
Altos Eye Physicians, Los Altos, CA, USA.
Purpose: To quantify and compare the cost, waste, and carbon emissions of single-use and reusable phacoemulsification tubing/cassettes and knives.
Setting: Private, single-specialty ambulatory surgery center (Mountain View, CA, USA).
Design: Retrospective data review.
Int J Biol Macromol
September 2025
Aerofybers Technologies SL. Parc Científic (UV), Carrer del Catedràtic Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain; Food Safety and Preservation Department, IATA-CSIC, Carrer del Catedràtic Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address: isaacbg@aerofy
Highly porous, lightweight aerogels were developed based on cellulose extracted via industrial Kraft treatments from vine shoot (S) with the aim of valorising a currently generated waste and eucalyptus (EU) to reduce seasonality. In order to enhance their hydrophobicity and mechanical resistance, a poly-lactic acid (PLA) coating was applied through two different methodologies: spray- and pipette-coating. The resulting materials presented low densities (23-80 kg/m) with improved mechanical performance, revealing a notable augment in compressive strength after PLA coating (up to 20-fold increase, reaching 1.
View Article and Find Full Text PDF