Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: In this study we evaluated the utility of in-vitro screening tools for predicting the in-vivo behavior of six cyclic peptides with different solubility and permeability properties (BCS class II and III), intended for oral delivery in presence of permeation enhancer Labrasol.

Methods: An in vitro flux assay was used to assess peptide permeation across a biomimetic, lipid-based membrane and in vivo studies in rats were used to determine oral peptide bioavailability in the presence of Labrasol.

Results: The in vitro flux was significantly increased for BCS class III peptides, while it significantly decreased or remained unchanged for BCS class II peptides with increasing Labrasol concentrations. The different flux responses were attributed to the combination of reduced effective free peptide concentration and increased membrane permeability in the presence of Labrasol. In vivo studies in male Wistar-Hans rats indicated improved oral bioavailability at different extents for all peptides in presence of Labrasol. On comparing the in vitro and in vivo data, a potential direct correlation for BCS class III peptides was seen but not for BCS class II peptides, due to lower free concentrations of peptides in this class.

Conclusion: This study assessed the utility of in vitro screening tools for selecting peptides and permeation excipients early in drug product development. Graphical Abstract Graphical Abstract and Figure 1 contains small text.Graphical Abstract text is made larger. The Figure 1 text cannot be made larger.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-019-2682-8DOI Listing

Publication Analysis

Top Keywords

bcs class
20
screening tools
12
class iii
12
utility vitro
8
vitro screening
8
tools predicting
8
oral peptide
8
peptides
8
vitro flux
8
vivo studies
8

Similar Publications

Prodrugs with enzymatic activation requirements, such as the weakly basic biopharmaceutical classification system (BCS) class IV compound abiraterone acetate (ABA), face considerable bioequivalence (BE) risks owing to their pH-dependent solubility, food effects, and variable intestinal hydrolysis. This study established clinically relevant dissolution specifications for ABA using biorelevant dissolution and physiologically based biopharmaceutics modelling (PBBM). Two dissolution methods, two-stage (gastrointestinal transfer simulation) and single-phase (biorelevant media), were evaluated under fasted and fed conditions.

View Article and Find Full Text PDF

Novel development of lipid-based formulations: Improved wettability and homogeneous API solid dispersion visualised via near-infrared hyperspectral imaging.

Eur J Pharm Biopharm

September 2025

Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria. Electronic address:

Lipid-based formulations have been successfully applied to improve the aqueous solubility of active pharmaceutical ingredients (APIs), however, with the bottleneck of limited wettability of the system. In this study, a lipid-based system was developed using polyglycerol ester of fatty acids (PGFA) as the main component and hexaglycerol (PG6) as a wetting agent. Felodipine, a BCS class II compound was selected as a model API.

View Article and Find Full Text PDF

Tacrolimus belongs to the BCS class-II drug family and exhibits poor water solubility, which leads to poor bioavailability. Furthermore, since tacrolimus is an immunosuppressant, it is essential to maintain its therapeutic concentration for a greater period of time to confirm its effectiveness against transplant rejection. Therefore, to achieve the objective of the sustained release of the drug with a suitable amount of entrapment efficiency, pH-sensitive tacrolimus-loaded superabsorbent hydrogels using chitosan have been prepared.

View Article and Find Full Text PDF

Tadalafil (TDLF), a Biopharmaceutics Classification System (BCS) Class II drug, exhibits poor aqueous solubility and extensive first-pass metabolism, which limits its therapeutic efficacy. We developed Phosal-based transethosomes (TrEthOs) to overcome these challenges, thereby enhancing transdermal delivery. A Box-Behnken design was employed to optimize the formulation by evaluating the effects of Phosal type, polyethylene glycol (PEG) 400 concentration, and cholesterol content.

View Article and Find Full Text PDF

Two-Step Nucleation and Amorphization of Carbamazepine Using a Micro-Droplet Precipitation System.

Pharmaceutics

August 2025

Department of Chemical Engineering (Integrated Engineering Program), College of Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea.

: Transforming poorly soluble crystalline drugs into their amorphous form is a well-established strategy in pharmaceutical science to enhance their solubility and improve their clinical efficacy. However, developing amorphous forms of organic drugs for pharmaceutical applications presents significant technical hurdles due to the lack of suitable analytical tools for the amorphization process. Carbamazepine is a crystalline BCS class II drug commonly used for epilepsy and trigeminal neuralgia, whose clinical efficacy is compromised by its low solubility and slow dissolution.

View Article and Find Full Text PDF