98%
921
2 minutes
20
Rice-frog cultivation is a traditional farming system in China and has been reintroduced as an agricultural practice in China in recent years. The microbial community in paddy rhizospheric soils has attracted much attention because many microorganisms participate in functional processes in soils. In this study, Illumina MiSeq sequencing-based techniques were used to investigate soil microbial communities and functional gene patterns across samples obtained by conventional rice cultivation (CR) and rice-frog cultivation (RF). The results showed that RF significantly affected the microbial community composition and richness, which indicated that the rhizospheric microorganisms responded to the introduction of tiger frogs into the paddy fields. Operational taxonomic units (OTUs) from , , Nitrososphaera, Nitrosotalea, Nitrosoarchaeum and some unclassified OTUs from and were significantly enriched by RF. The abiotic parameters soil organic carbon (SOC), nitrate nitrogen (NO -N), and available phosphorus (AP) changed under RF treatment and played essential roles in establishing the soil bacterial, archaeal, and fungal compositions. Correlations between environmental factors and microbial communities were described using network analysis. SOC was strongly correlated with , , and . NO -N showed strong positive correlations with , , and NH -N was strongly positively associated with , and TN was strongly positively correlated with Nitrotoga. Compared to conventional CR, RF greatly enriched specific microbial taxa. These taxa may be involved in the decomposition of complex organic matter and the transformation of soil nutrients, thus promoting plant growth by improving nutrient cycling. The unique patterns of microbial taxonomic and functional composition in soil profiles suggested functional redundancy in these paddy soils. RF could significantly affect the bacterial, archaeal, and fungal communities though changing SOC and AP levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693445 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.01752 | DOI Listing |
Mol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFFront Immunol
September 2025
Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.
Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).
Front Immunol
September 2025
Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
In the last decades, immunotherapy has revolutionized cancer treatment. Despite its success, a significant number of patients fail to respond, and the underlying causes of ineffectiveness remain poorly understood. Factors such as nutritional status and body composition are emerging as key predictors of immunotherapy outcomes.
View Article and Find Full Text PDF