Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial activity is the main route for cycling mangrove nutrients. In general, microorganisms have abilities to degrade lignocellulosic compounds. Among the biotechnological potential of the microbiota from mangroves, it is noteworthy about endophytic fungi, which can be considered as effective sources of different bioactive compounds. In this sense, thirty (30) endophytic fungi were isolated from mangrove forest sampling Cananeia, SP, Brazil. These microorganisms were analyzed about their enzymatic activities including: lignin peroxidase EC 1.11.1.14, manganese peroxidase EC 1.11.1.13 and laccase EC 1.10.3.2, as well endo-cellulase EC 3.2.1.4 and endo-xylanase EC 3.2.1.8. Besides that, production of bioactive secondary metabolites like biosurfactant and/or bioemulsifier was also investigated. As results, nineteen (19) isolates were selected about their ligninolytic abilities, nine (9) of them about cellulase activity and thirteen (13) showed xylanase abilities. The fungal isolate named as 3(3), characterized as Fusarium sambucinum, showed a prominent lignin peroxidase (42.4 U L) and manganese peroxidase (23.6 U L) activities. The isolate 63.1, also related to Fusarium sp. genera, was selected about its laccase activity (41.5 U L). From all the investigated fungi, the isolate 47(4) Trichoderma camerunense was selected about its cellulolytic and xylanolytic activities, showing 45.23 and 26.09 U mL, respectively. The same fungi also showed biosurfactant ability demonstrated by superficial tension decreasing to 38 mN/m. In addition, fifteen (15) fungi exhibited bioemulsifier activity, with E values up to 62.8%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702500PMC
http://dx.doi.org/10.1186/s13568-019-0850-1DOI Listing

Publication Analysis

Top Keywords

endophytic fungi
12
mangrove forest
8
lignin peroxidase
8
manganese peroxidase
8
fungi
6
enzymatic potential
4
potential biosurfactant
4
biosurfactant production
4
production endophytic
4
fungi mangrove
4

Similar Publications

Endophytic Fusarium isolates from Ceratozamia mirandae enhance tomato growth, suppress pathogenic fungi, and induce protection against Botrytis cinerea.

Rev Argent Microbiol

September 2025

IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.

Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).

View Article and Find Full Text PDF

The taxonomic status of two bacterial strains, KW56 and 2063, isolated from root nodules of (Spanish broom), was investigated using a polyphasic approach. Both isolates belong to the genus , yet exhibit significant genotypic and phenotypic differences from all currently described species. Whole-genome comparisons revealed that strain KW56 is most closely related to PETP 02, while strain 2063 is related to strains STM 196 and 29-15.

View Article and Find Full Text PDF

The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using , an endophytic fungus isolated from . The eco-friendly synthesis process employed fungal extracts as reducing and stabilizing agents thereby minimizing the need for hazardous chemicals.

View Article and Find Full Text PDF

[Research progress in key technologies for the development of Dendrobium officinale: from a rare and endangered species to a 10-billion-RMB-level industry].

Zhongguo Zhong Yao Za Zhi

July 2025

National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University Hangzhou 311300, China Grand Health Research Institute of Senshan, Zhejiang A&F University Yiwu 322000, China.

Dendrobium officinale(DO) is a traditional Chinese medicinal and edible plant, while it is critically endangered worldwide. This article, primarily based on the original research findings of the author's team and available articles, provides a comprehensive overview of the factors contributing to the endangerment of DO and the key technologies for the conservation, efficient cultivation, and value-added utilization of this plant. The scarcity of wild populations, low seed-setting rates, lack of endosperm in seeds, and the need for symbiosis with endophytic fungi for seed germination under natural conditions are identified as the primary causes for the rarity and endangerment of DO.

View Article and Find Full Text PDF

Diminishing the productivity of Taxol by the potential fungi with storage is the key hurdle that impedes their applications to be an industrial platform for Taxol production. Thus, exploring of a fungal isolate with a reliable robustness for Taxol biosynthesis is the objective of this study. Although, Encephalartos bubalinus has diverse ethnopharmaceutical properties, however, the identity of its endophytic fungi remains poorly explored.

View Article and Find Full Text PDF