Encapsulating MnSe Nanoparticles Inside 3D Hierarchical Carbon Frameworks with Lithium Storage Boosted by in Situ Electrochemical Phase Transformation.

ACS Appl Mater Interfaces

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional, Molecules & College of Chemistry and Chemical Engineering , Hubei University, Wuhan 430062 , People's Republic of China.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrode materials that act through the electrochemical conversion mechanism, such as metal selenides, have been considered as promising anode candidates for lithium-ion batteries (LIBs), although their fast capacity attenuation and inadequate electrical conductivity are impeding their practical application. In this work, these issues are addressed through the efficient fabrication of MnSe nanoparticles inside porous carbon hierarchical architectures for evaluation as anode materials for LIBs. Density functional theory simulations indicate that there is a completely irreversible phase transformation during the initial cycle, and the high structural reversibility of β-MnSe provides a low energy barrier for the diffusion of lithium ions. Electron localization function calculations demonstrate that the phase transformation leads to high charge transfer kinetics and a favorable lithium ion diffusion coefficient. Benefitting from the phase transformation and unique structural engineering, the MnSe/C chestnut-like structures with boosted conductivity deliver enhanced lithium storage performance (885 mA h g at a current density of 0.2 A g after 200 cycles), superior cycling stability (a capacity of 880 mA h g at 1 A g after 1000 cycles), and outstanding rate performance (416 mA h g at 2 A g).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b10961DOI Listing

Publication Analysis

Top Keywords

phase transformation
16
mnse nanoparticles
8
nanoparticles inside
8
lithium storage
8
encapsulating mnse
4
inside hierarchical
4
hierarchical carbon
4
carbon frameworks
4
lithium
4
frameworks lithium
4

Similar Publications

Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

Structure Engineering Enabled O-O Radical Coupling in Spinel Oxides for Enhanced Oxygen Evolution Reaction.

J Am Chem Soc

September 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.

View Article and Find Full Text PDF

The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.

View Article and Find Full Text PDF