98%
921
2 minutes
20
Plants contain a large family of so-called calmodulin-like proteins (CMLs) which differ from canonical calmodulin in that they show greater variability in sequence, length, and number of EF-hand domains. The presence of this extended CML family has raised questions regarding the role of these proteins: are they functionally redundant or do they play specific functions in physiological plant processes? To answer these questions, comprehensive biochemical and structural information on CML proteins is fundamental. Among the 50 CMLs from Arabidopsis thaliana, herein we described the ability of CML7 to bind metal ions focusing on the Ca and Mg sensing properties, as well as on metal-induced conformational changes. Circular dichroism and nuclear magnetic resonance (NMR) studies indicated that both Ca and Mg stabilize CML7, as reflected in conformational rearrangements in secondary and tertiary structure and in increases in thermal stability of the protein. However, the conformational changes that binding induces differ between the two metal ions, and only Ca binding controls a structural transition that leads to hydrophobic exposure, as suggested by 8-anilino-1-naphthalenesulfonic acid fluorescence. Isothermal titration calorimetry data coupled with NMR experiments revealed the presence of two high affinity Ca-binding sites in the C-lobe of CML7 and two weaker sites in the N-lobe. The paired nature of these CML7 EF-hands enables them to bind Ca with positive cooperativity within each globular domain. Our results clearly place CML7 in the category of Ca sensors. Along with this, the protein can bind to a model target peptide (melittin) in a Ca-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2019.110796 | DOI Listing |
Plant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFPlant J
September 2025
Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany.
Progestogens and androgens are steroids found in a wide range of plants, but little is known about their physiological functions. In this study, we sowed seeds of angiosperms on progestogen- and androgen-containing medium and analysed their morphological effects. We further investigated the effects of progesterone and testosterone on brassinosteroid profiles and gene expression in A.
View Article and Find Full Text PDFJ Appl Genet
September 2025
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.
Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.
View Article and Find Full Text PDFNew Phytol
September 2025
Institute of Plant Biochemistry and Cluster of Excellences on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Düsseldorf, 40225, Germany.
In mammals, blood sugar levels are tightly controlled by two hormones: insulin and glucagon. In flowering plants, a comparable regulatory mechanism exists, mediated by the sugar-signalling molecule trehalose 6-phosphate (Tre6P). Similar to insulin, Tre6P functions as a signal and negative feedback regulator of sucrose, the main transport sugar in vascular plants.
View Article and Find Full Text PDFPlant Sci
September 2025
Institute of Chinese Medicinal Materials, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China. Electronic address:
Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.
View Article and Find Full Text PDF