98%
921
2 minutes
20
Parkinson's disease (PD) is the second most frequent neurodegenerative disease worldwide and the availability of early biomarkers and novel biotargets represents an urgent medical need. The main pathogenetic hallmark of PD is the specific loss of nigral dopaminergic neurons, in which mitochondrial dysfunction plays a crucial role. Mitochondrial proteases are central to the maintenance of healthy mitochondria and they have recently emerged as drug targets. However, an exhaustive characterization of these enzymes and their targets is still lacking, due to difficulties in analyzing proteolytic fragments by bottom-up proteomics approaches. Here, we propose the "mitochondrial dimethylation-TAILS" strategy, which combines the isolation of mitochondria with the enrichment of N-terminal peptides to analyze the mitochondrial N-terminome. We applied this method in a cellular model of altered dopamine homeostasis in neuroblastoma SH-SY5Y cells, which recapitulates early steps of PD pathogenesis. The main aim was to identify candidate mitochondrial proteases aberrantly activated by dopamine dysregulation and their cleaved targets. The proposed degradomics workflow was able to improve the identification of mitochondrial proteins if compared to classical shotgun analysis. In detail, 40% coverage of the mitochondrial proteome was obtained, the sequences of the transit peptides of two mitochondrial proteins were unveiled, and a consensus cleavage sequence for proteases involved in the processing of mitochondrial proteins was depicted. Mass spectrometry proteomics data have been submitted to ProteomeXchange with the identifier PXD013900. Moreover, sixty-one N-terminal peptides whose levels were affected by dopamine treatment were identified. By an in-depth analysis of the proteolytic peptides included in this list, eleven mitochondrial proteins showed altered proteolytic processing. One of these proteins (i.e., the 39S ribosomal protein L49 - MRPL49) was cleaved by the neprilysin protease, already exploited in clinics as a biotarget. We eventually demonstrated a mitochondrial subcellular localization of neprilysin in human cells for the first time. Collectively, these results shed new light on mitochondrial dysfunction linked to dopamine imbalance in PD and opened up the possibility to explore the mitochondrial targets of neprilysin as candidate biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685049 | PMC |
http://dx.doi.org/10.3389/fnagi.2019.00195 | DOI Listing |
Exp Physiol
September 2025
Department of Hepatobiliary Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4C, Martin, 036 01, Slovakia.
Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.
View Article and Find Full Text PDFJ Bioenerg Biomembr
September 2025
Department of Vascular, Shanghai TCM-INTEGRATED Hospital, Shanghai, 200082, China.
This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, Hunan 410060, P.R. China.
S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.
View Article and Find Full Text PDF