Climate, Life Form and Family Jointly Control Variation of Leaf Traits.

Plants (Basel)

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Variation in leaf traits may represent differences in physiological processes and environmental adaptative strategies. Using multivariate analyses, we investigated 13 leaf traits to quantify the trade-off in these traits and the trait-climate/biome relationships based on the China Plant Trait Database, which contains morphometric and physiological character information on 1215 species for 122 sites, ranging from the north to the tropics, and from deserts and grasslands to woodlands and forests. Leaf traits across the dataset of Chinese plants showed different spatial patterns along longitudinal and latitudinal gradients and high variation. There were significant positive or negative correlations among traits; however, with the exception of the leaf C:C stable isotope ratio, there were no significant correlations between leaf area and other traits. Climate, life form, and family jointly accounted for 68.4% to 95.7% of trait variance. Amongst these forms of variation partitioning, the most important partitioning feature was the family independence of climate and life form (35.6% to 57.2%), while the joint effect of family and climate was 4.5% to 26.2%, and the joint effect of family and life form was 2.4% to 21.6%. The findings of this study will enhance our understanding of the variation in leaf traits in Chinese flora and the environmental adaptative strategies of plants against a background of global climate change, and also may enrich and improve the leaf economics spectrum of China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724092PMC
http://dx.doi.org/10.3390/plants8080286DOI Listing

Publication Analysis

Top Keywords

leaf traits
20
life form
16
climate life
12
variation leaf
12
form family
8
family jointly
8
leaf
8
traits
8
environmental adaptative
8
adaptative strategies
8

Similar Publications

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Background And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.

View Article and Find Full Text PDF

Global wheat (Triticum aestivum L.) production faces significant challenges due to the destructive nature of leaf (Puccinia triticina; leaf rust [Lr]), stem (Puccinia graminis; stem rust [Sr]), and stripe (Puccinia striiformis; stripe rust [Yr]) rust diseases. Despite ongoing efforts to develop resistant varieties, these diseases remain a persistent challenge due to their highly evolving nature.

View Article and Find Full Text PDF

Exploring lactic acid bacteria diversity of hop plant by-products to develop a multi-strain starter culture to be used in hop-supplemented sourdough bread.

Food Res Int

November 2025

Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.

The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.

View Article and Find Full Text PDF

Background: Southern corn leaf blight (SCLB), caused by Cochliobolus heterostrophus, is a major disease that severely affects maize production globally, especially in tropical and subtropical regions. Conventional control strategies, such as chemical fungicides and resistant cultivars, are limited due to environmental and health concerns.

Results: This study explores Bacillus velezensis JLU-55 as a potential biological control agent against C.

View Article and Find Full Text PDF