A nickel-iridium alloy as an efficient heterogeneous catalyst for hydrogenation of olefins.

Chem Commun (Camb)

Department of Applied Chemistry, School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nickel and iridium supported on SiO2 (Ni-Ir/SiO2) acted as an effective and reusable heterogeneous catalyst for hydrogenation of olefins, and it showed higher activity and selectivity than the monometallic counterparts. The Ni-Ir/SiO2 catalyst has small Ni-Ir alloy and monometallic Ni particles, and the high catalytic performance can be attributed to the isolated Ni atom in the Ni-Ir alloys.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc04822gDOI Listing

Publication Analysis

Top Keywords

heterogeneous catalyst
8
catalyst hydrogenation
8
hydrogenation olefins
8
nickel-iridium alloy
4
alloy efficient
4
efficient heterogeneous
4
olefins nickel
4
nickel iridium
4
iridium supported
4
supported sio2
4

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.

View Article and Find Full Text PDF

Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.

View Article and Find Full Text PDF

Polytantalotungstates Stabilized Iron Catalysts for Carbonylation of Benzylic C-H Bonds.

Inorg Chem

September 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

Selective oxidation of benzylic C(sp)-H bonds to ketones is critical to the production of fine chemicals but typically requires toxic/precious metal catalysts under harsh conditions. While iron-based complexes have recently served as catalysts for photocatalytic C-H bond activation, most systems operate via homogeneous catalysis. Developing a light-driven strategy under visible light with O as an oxidant is of major importance.

View Article and Find Full Text PDF

Catalysts for heterogeneous advanced oxidation processes (AOPs) in water remediation face environmental sustainability challenges, due to the intensive production of catalysts and limited stability of catalysts while maintaining high efficiency. Herein, we design a biomimetic carbon catalyst (BCC) inspired by the diatom frustule valve structure, achieving high environmental sustainability while maintaining superior water decontamination performance by a non-radical direct electron transfer (DET) pathway through activating peracetic acid (PAA). Utilizing a hydrogen-bonding strategy, BCC features pillared layered hierarchical pores with an ultrahigh specific surface area of 2710.

View Article and Find Full Text PDF