Robust and Precise Wounding and Analysis of Engineered Contractile Tissues.

Tissue Eng Part C Methods

Department of Chemical Engineering, McGill University, Montreal, Canada.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fibrous tissue gap closure is a critically important process initiated in response to traumatic injury. Recent three-dimensional (3D) bioengineered models capture cellular details of this process, including wound retraction and closure, but have high failure rates, are labor-intensive, and require considerable expertise to develop and implement with tools that are typically not available in standard wet laboratories. Here, we develop a simple and effective 3D-printed wounding platform to reliably create and puncture arrays of prestressed tissues and monitor subsequent wound dynamics. We demonstrate the ability to create a range of wound sizes in a contractile collagen/fibroblast tissue, within 125 μm of the desired target location, with high degrees of circularity. Wounds exhibit an initial expansion due to tissue prestress, and sufficiently small wounds close completely within 24 h, while larger wounds initially closed much more rapidly, but did not complete the closure process. Simulating the dynamics of tissue retraction with a viscoplastic finite element model indicates a temporary elevation of circumferential stresses around the wound edge. Finally, to determine whether active wounding and retraction of the tissue significantly affect closure rates, we compared active puncture of prestressed tissue with passive removal of a structure that prevents closure, and found that active wounding and retraction substantially accelerated wound closure when compared with the passive case. Taken together, our findings support the role of active tissue mechanics in wound closure arising from an initial retraction of the tissue. More broadly, these findings demonstrate the utility of the platform and methodology developed here in further understanding the mechanobiological basis for wound closure. Impact Statement models to study wound formation and closure in prestressed tissue are typically challenging to implement. This work provides an easily accessible approach to produce and analyze wounds in arrays of contractile tissues that recapitulate critical features of wound retraction and closure in animal models. The specific modeling and experiments results presented here suggest that mechanobiology effects arising from wound retraction in viscoplastic extracellular matrices could play an important role in driving wound closure.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2019.0123DOI Listing

Publication Analysis

Top Keywords

wound closure
16
wound retraction
12
closure
11
wound
11
tissue
9
contractile tissues
8
retraction closure
8
retraction viscoplastic
8
active wounding
8
wounding retraction
8

Similar Publications

Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

The authors present treatment of patients with spinal injury complicated by extensive multiple pressure sores. A comprehensive preoperative management was followed by staged surgical treatment. Advisability of deep bedsore closure with full-layer flaps and staged interventions was justified.

View Article and Find Full Text PDF

[Not Available].

Tidsskr Nor Laegeforen

September 2025

Nevrokirurgisk avdeling, Oslo universitetssykehus, Rikshospitalet, og, Pediatrisk nevrokirurgisk forskningsgruppe, Universitetet i Oslo.

Background: Closure of soft tissue defects following surgical repair of neonatal myelomeningocele requires prompt and well-justified decisions regarding the reconstruction method if the defects are to be closed within the first two days of life. For larger defects, flap reconstruction is often necessary. The aim of the study was to examine reconstruction methods for closing soft tissue defects following surgery for myelomeningocele, as well as complications and the need for reoperation.

View Article and Find Full Text PDF

The properties of Ocicmum gratissimum aqueous extract against ultraviolet-C-induced inflammation.

J Ethnopharmacol

September 2025

Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, 950, Taiwan; Master Program in Biomedical Science, National Taitung University, Taitung, 950, Taiwan; Elderly Industry Sustainable Low Carbon Research Center, Na

Ethnopharmacological Relevance: Ocimum gratissimum L. commonly known as basil, is an herb-like plant frequently mentioned in ethnopharmacological studies due to its widespread availability in local communities and its widespread use in treating inflammatory conditions. In a previous study, we demonstrated that aqueous extracts of Ocimum gratissimum (OGE), which are rich in plant polyphenols such as caffeic acid and isoflavones, can protect skin cells from UVC-induced inflammation and damage in migration and proliferation.

View Article and Find Full Text PDF