98%
921
2 minutes
20
Novel antimicrobial classes are in desperate need for clinical management of infections caused by increasingly prevalent multi-drug resistant pathogens. The protein-protein interaction between bacterial RNA polymerase (RNAP) and the housekeeping sigma initiation factor is essential to transcription and bacterial viability. It also presents a potential target for antimicrobial discovery, for which a hit compound () was previously identified from a pharmacophore model-based screen. In this study, the hit compound was experimentally assessed with some rationally designed derivatives for the antimicrobial activities, in particular against e and other pathogens. One compound, , shows dramatically improved activity against pneumococci compared to . also attenuates toxin production more strongly than existing classes of antibiotics tested. Here we demonstrate a newly validated antimicrobial agent to address an overlooked target in the hit-to-lead process, which may pave the way for further antimicrobial development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719014 | PMC |
http://dx.doi.org/10.3390/molecules24162902 | DOI Listing |
Med Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
Thunb is endogenous to Southeast Asia and traditionally used for the treatment of bacterial and viral infections. Previous studies reported various pharmacological activities, including cytotoxic activity. The aim of this work was to identify phytoconstituents of the ethanolic extract of aerial parts using extensive 1D- and 2D-NMR analysis and HR-MS.
View Article and Find Full Text PDFIntroduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2025
Department of Natural Sciences and Sustainable Resources, Institute of Organic Chemistry, BOKU University, 1190 Vienna, Austria.
Nonreducing disaccharides are prevalent in non-mammalian glycans and glycolipids, serving as pivotal structural components in mycobacterial glycans, microbial oligosaccharide and nucleoside antibiotics, as well as biologically active mimetics of bacterial pathogen-associated molecular patterns (PAMPs). As integral components of PAMPs, 1,1'-linked disaccharide-containing biomolecules play important roles in host-pathogen interactions, cellular signaling, and pathogenesis. Accessing complex biomolecules containing nonreducing disaccharides is often hindered by difficulties in isolating them from natural sources, which can result in impure or degraded products, particularly when sensitive functional groups are involved.
View Article and Find Full Text PDF