Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study investigates the hydrothermal liquefaction (HTL) of harmful green macroalgal blooms at a temperature of 270 °C with, and without a catalyst with a holding time of 45 min. The effect of different catalysts on the HTL product yield was also studied. Two separation methods were used for recovering the biocrude oil yield from the solid phase. On comparision with other catalyst, NaCO was found to produce higher yiled of bio-oil. The total bio-oil yield was 20.10% with NaCO, 18.74% with TiO, 17.37% with CaO, and 14.6% without a catalyst. The aqueous phase was analyzed for TOC, COD, TN, and TP to determine the nutrient enrichment of water phase for microalgae cultivation. Growth of four microalgae strains viz., Chlorella Minutissima, Chlorella sorokiniana UUIND6, Chlorella singularis UUIND5 and Scenedesmus abundans in the aqueous phase were studied, and compared with a standard growth medium. The results indicate that harmful macroalgal blooms are a suitable feedstock for HTL, and its aqueous phase offers a promising nutrient source for microalgae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684647PMC
http://dx.doi.org/10.1038/s41598-019-47664-wDOI Listing

Publication Analysis

Top Keywords

aqueous phase
16
macroalgal blooms
12
hydrothermal liquefaction
8
harmful macroalgal
8
phase
6
low-temperature catalyst
4
catalyst based
4
based hydrothermal
4
liquefaction harmful
4
aqueous
4

Similar Publications

Construction of Hollow Structured Covalent Organic Framework with Chiral Internal Catalytic Sites for Asymmetric Hydrogenation.

Small

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.

The functionality of covalent organic frameworks (COFs) is usually highly related to their morphologies. Among various morphologies, the hollow-structured COFs have recently attracted intense attention due to their unique properties. Herein, the synthesis of hollow structured COFs are first reported with the chiral internal sites via combining the chiral templating method with the acid etching approach.

View Article and Find Full Text PDF

Determination of alcohol concentration in a single drop blood obtained via fingertip using gas chromatography/mass spectrometry coupled with solid-phase microextraction.

Leg Med (Tokyo)

September 2025

Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.

View Article and Find Full Text PDF

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Optimization and application of pretreatment for the analysis of typical per- and polyfluoroalkyl substances (PFAAs) in drinking water: a systematic evaluation of filter membranes and SPE Sorbents.

Anal Sci

September 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.

The accurate detection of trace perfluoroalkyl acids (PFAAs) in drinking water remains challenging due to nonspecific adsorption losses during pretreatment. This study systematically evaluated the adsorption behaviors of 11 PFAAs across five filtration membranes and four solid-phase extraction (SPE) sorbents to establish an optimized analytical protocol. Results demonstrated that glass fiber (GL) filters minimized PFAAs retention (94.

View Article and Find Full Text PDF