98%
921
2 minutes
20
Multivalent protein-protein interactions including bivalent and trivalent interactions play a critical role in mediating a wide range of biological processes. Hence, there is a significant interest in developing molecules that can modulate those signaling pathways mediated by multivalent interactions. For example, multimeric molecules capable of binding to a receptor protein through a multivalent interaction could serve as modulators of such interactions. However, it is challenging to efficiently generate such multimeric ligands. Here, we have developed a facile solid-phase method that allows for the rapid generation of (homo- and hetero-) dimeric and trimeric protein ligands. The feasibility of this strategy was demonstrated by efficiently synthesizing fluorescently-labeled dimeric peptide ligands, which led to dramatically increased binding affinities (~400-fold improvement) relative to a monomeric 14-3-3σ protein ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2019.103141 | DOI Listing |
Org Lett
September 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
The synthesis of tirzepatide relies heavily on solid phase peptide synthesis (SPPS), a process that is both costly and time-consuming. In this paper, a novel soluble liquid-phase assisted (LPPS) strategy for the efficient synthesis of tirzepatide is presented. The efficacy of the method is based on the distinct solubility properties of the soluble tag, which enables high yield synthesis while significantly reducing wastage of amino acids and solvents.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
Polyunsaturated fatty acids (PUFAs), fatty acids with multiple unsaturated carbon-carbon bonds, constitute a crucial class of lipids. While the vast diversity of PUFA species arises from their structural variations, most of them are poorly investigated due to their limited availability. Here, we utilize solid-phase synthesis of PUFAs, which we have recently developed, to construct a PUFA library.
View Article and Find Full Text PDFRSC Adv
September 2025
Food and Drug Safety Research Center, Pharmaceutical Sciences Institute, Tabriz University of Medical Sciences Tabriz Iran.
This study focuses on developing an analytical method to efficiently extract and concentrate several adipate and phthalate plasticizers that can migrate from plastic packaging into various wound disinfectants. The study employed an approach that combined dispersive micro solid phase extraction with dispersive liquid-liquid microextraction using ZIF-4 as an adsorbent. The adsorbent was thoroughly characterized to understand its properties.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biological Sciences, School of Science Hampton University Hampton Virginia USA.
Lemon balm (), a perennial herb belonging to the Lamiaceae family, is widely recognized for its medicinal properties and therapeutic benefits. This review offers a detailed exploration of the botanical features, phytochemical composition, and pharmacological uses of , highlighting key bioactive compounds such as phenolic acids (including rosmarinic and caffeic acids), flavonoids, essential oils (such as citral and citronellal), and triterpenoids (ursolic and oleanolic acids). Advanced extraction techniques, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), and matrix solid-phase dispersion (MSPD), have greatly improved the efficiency of extraction, the preservation of bioactivity, and the sustainability of acquiring these bioactive compounds.
View Article and Find Full Text PDFLeg Med (Tokyo)
September 2025
Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.
View Article and Find Full Text PDF