Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The near-infrared absorbing conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) has been investigated as a contrast agent for optical and photoacoustic imaging. Lipophilic π-conjugated polymers can be efficiently encapsulated within self-assembling diblock copolymer poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles, although the effect of variations in PEG and PLGA chain lengths on nanoparticle properties, performance and biocompatibility have not yet been investigated. In this study, PEG-PLGA with different block lengths (PEG-PLGA, PEG-PLGA and PEG-PLGA) were used to encapsulate PCPDTBT. Nanoparticle sizes were smallest (<100 nm) when using PEG-PLGA, with <5% PCPDTBT content and a reduction in the total solids concentration of the organic phase. All PEG-PLGA nanoparticles were colloidally stable in water and serum-supplemented cell culture medium over 24 h at 37 °C, with slight evidence of protein surface adsorption. PEG-PLGA systems showed a threefold lower cytotoxicity (IC value) than the other two systems. Haemolytic activity was <2.5% for all systems and no platelet aggregation or inhibition of ADP-induced platelet aggregation was observed. Encapsulation of PCPDTBT within a PEG-PLGA matrix shifted fluorescence emission towards red wavelengths (760 nm in THF vs. 840 nm in nanoparticles) and reduced the quantum yield by 30-70-fold compared to THF. Nonetheless, PCPDTBT:PEG-PLGA systems had a marginally higher quantum yield and signal-to-background ratio in a phantom mouse compared with PEG-PLGA and PEG-PLGA systems. As a photoacoustic imaging probe, PCPDTBT:PEG-PLGA systems also showed a higher photoacoustic amplitude compared to higher molecular weight PEG-PLGA systems. Overall, the low molecular weight PEG-PLGA nanoparticle systems conferred the benefits of smaller sizes, reduced cytotoxicity and enhanced imaging performance compared to higher molecular weight matrix polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb00937jDOI Listing

Publication Analysis

Top Keywords

conjugated polymer
8
peg-plga peg-plga
8
peg-plga
6
low molecular
4
molecular weight
4
weight peg-plga
4
peg-plga polymers
4
polymers provide
4
provide superior
4
superior matrix
4

Similar Publications

Preparation, Characterization, and Self-Assembly of P3HT-Based Janus Fibers via a Crystallization-Driven Self-Assembly Process.

ACS Macro Lett

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.

View Article and Find Full Text PDF

Optimizing bio-imaging with computationally designed polymer nanoparticles.

J Mater Chem B

September 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.

View Article and Find Full Text PDF

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

Quinoa protein-dextran conjugates as functional stabilizers for curcumin-loaded Nanoemulsions.

Food Res Int

November 2025

Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:

This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.

View Article and Find Full Text PDF

Molecular engineering of two-dimensional polyamide interphase layers for anode-free lithium metal batteries.

Nat Mater

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.

Anode-free lithium (Li) metal batteries are promising candidates for high-performance energy storage applications. Nonetheless, their translation into practical applications has been hindered by the slow kinetics and reversibility of Li plating and stripping on copper foils. Here we report a two-dimensional polyamide (2DPA)/lithiated Nafion (LN) interphase layer for anode-free Li metal batteries.

View Article and Find Full Text PDF