Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit.

Trends Plant Sci

Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK. Electronic address:

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lateral roots (LRs) are crucial for increasing the surface area of root systems to explore heterogeneous soil environments. Major advances have recently been made in the model plant arabidopsis (Arabidopsis thaliana) to elucidate the cellular basis of LR development and the underlying gene regulatory networks (GRNs) that control the morphogenesis of the new root organ. This has provided a foundation for understanding the sophisticated adaptive mechanisms that regulate how plants pattern their root branching to match the spatial availability of resources such as water and nutrients in their external environment. We review new insights into the molecular, cellular, and environmental regulation of LR development in arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2019.06.015DOI Listing

Publication Analysis

Top Keywords

lateral root
4
root formation
4
arabidopsis
4
formation arabidopsis
4
arabidopsis well-ordered
4
well-ordered lrexit
4
lrexit lateral
4
lateral roots
4
roots lrs
4
lrs crucial
4

Similar Publications

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF

Objectives: Postoperative pain remains a significant concern in endodontics. The main aim of this clinical trial was to assess the impact of various obturation technique and sealer types on post-obturation pain and sealer extrusion in single-visit nonsurgical root canal treatments.

Materials And Methods: Study participants were recruited through consecutive sampling from patients referred to the Endodontic Department, Faculty of Dentistry, Institution University, diagnosed as asymptomatic irreversible pulpitis.

View Article and Find Full Text PDF

Isolation of a Novel Plant Growth-Promoting Dyella sp. From a Danish Natural Soil.

Environ Microbiol Rep

October 2025

DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.

Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Hormonal regulation of cell fate plasticity of xylem-pole-pericycle lineage in Arabidopsis roots.

Mol Plant

September 2025

Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:

In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.

View Article and Find Full Text PDF