Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compounds from the 2,2'-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2'-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the second deprotonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the second deprotonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the phyisco-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential applications as negative redox-active materials in organic flow batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp03176fDOI Listing

Publication Analysis

Top Keywords

flow batteries
12
redox-active materials
8
materials organic
8
organic flow
8
redox potential
8
pka second
8
second deprotonation
8
theoretical exploration
4
exploration 22'-bipyridines
4
22'-bipyridines electro-active
4

Similar Publications

Clinical, Immunological, and Vesicular Markers in Sarcopenia and Presarcopenia.

Front Biosci (Landmark Ed)

August 2025

Division of Biochemistry and Molecular Biology, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia.

Background: Sarcopenia is a complex, multifactorial condition characterized by progressive loss of muscle mass, strength, and function. Despite growing awareness, the early diagnosis and pathophysiological characterization of this condition remain challenging due to the lack of integrative biomarkers.

Objective: This study aimed to conduct a comprehensive multilevel profiling of clinical parameters, immune cell phenotypes, extracellular vesicle (EV) signatures, and biochemical markers to elucidate biological gradients associated with different stages of sarcopenia.

View Article and Find Full Text PDF

This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.

View Article and Find Full Text PDF

The development of flexible gas sensors is of growing interest in wearable electronics. However, developing a gas sensor with low operating temperature, high sensitivity, and rapid response remains a huge challenge. Herein, we first develop a polyacrylamide-sodium acrylate-sodium citrate (PAM-Na-SC) hydrogel electrolyte, and design a hydrogel-based nitrogen dioxide (NO) gas sensor enabled by zinc-air batteries (ZABs).

View Article and Find Full Text PDF

Proton Flux Engineering via Built-in Electric Fields in N-doped CuO@CoO@Ni(OH) Heterostructure for Rechargeable Zn-NO /5-Hydroxymethylfurfural Multielectron Transfer Systems.

Angew Chem Int Ed Engl

September 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China.

Electrocatalytic coupling of nitrate reduction (NORR) to ammonia with 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA) enables simultaneous wastewater remediation and biomass valorization. However, developing efficient bifunctional electrocatalysts for these multiproton-coupled electron transfer reactions remains challenging as conventional single-active-site catalysts inherently suffer from linear scaling relationships between intermediates and adsorption energies, particularly sluggish proton transfer. To address this, we engineered a triphasic N-doped CuO@CoO@Ni(OH) heterostructure with a gradient built-in electric field (BIEF), which synergistically enhances interfacial charge polarization and accelerates proton transport through dynamic coupling effects in both reactions: sufficient *H supply for NORR and fast Ni(OH)/NiOOH redox cycling during HMF oxidation (HMFOR), thus achieving unprecedented bifunctional performance: at - 0.

View Article and Find Full Text PDF

With the widespread application of lithium batteries in energy storage systems, their safety concerns have attracted increasing attention. Electrolyte leakage, as one of the primary safety hazards, necessitates highly sensitive and rapid detection technologies for early warning. Addressing the limitations of conventional methods (e.

View Article and Find Full Text PDF