98%
921
2 minutes
20
Aims: Drought is the major constraint to rainfed rice productivity in South Asia, but few reports provide detailed characterization of the soil properties related to drought stress severity in the region. The aim of the study was to provide a compilation of drought breeding network sites and their respective levels of drought stress, and to relate soil parameters with yield reduction by drought.
Methods: This study characterized levels of drought stress and soil nutrient and physical properties at 18 geographically distributed research station sites involved in rice varietal screening in Bangladesh, India, and Nepal, as well as at farmers' fields located near the research stations.
Results: Based on soil resistance to penetration profiles, a hardpan was surprisingly absent at about half of the sites characterized. Significant relationships of depth of compaction and yield reduction by drought indicated the effects of soil puddling on susceptibility to cracking, rather than water retention by hardpans, on plant water availability in this region. The main difference between research stations and nearby farmers' fields was in terms of soil compaction.
Conclusions: These results present an initiative for understanding the range of severities of reproductive-stage drought stress in drought-prone rainfed lowland rice-growing areas in South Asia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560918 | PMC |
http://dx.doi.org/10.1007/s11104-017-3265-2 | DOI Listing |
Naturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC.
Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFFront Genet
August 2025
Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States.
This study introduces a Drought Adaptation Index (DAI), derived from Best Linear Unbiased Prediction (BLUP), as a method to assess drought resilience in switchgrass ( L.). A panel of 404 genotypes was evaluated under drought-stressed (CV) and well-watered (UC) conditions over four consecutive years (2019-2022).
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDF