98%
921
2 minutes
20
Ambient particulate matter (PM) pollution is a major environmental health risk in urban areas. Dense networks of low-cost air quality sensors are emerging to characterize the spatially heterogeneous concentrations that are typical of urban settings, but are not adequately captured using traditional regulatory monitors at central sites. In this study, we present the 100×100 BC Network, a 100-day deployment of low-cost black carbon (BC) sensors across 100 locations in West Oakland, California. This 15 km community is surrounded by freeways and affected by emissions associated with local port and industrial activities. We assess the reliability of the sensor hardware and data collection systems, and identify modes of failure to both quantify and qualify network performance. We illustrate how dynamic, local emission sources build upon background BC concentrations. BC concentrations varied sharply over short distances (∼100 m) and timespans (∼1 hour), depending on surrounding land use, traffic patterns, and downwind distance from pollution sources. Strong BC concentration fluctuations were periodically observed over the diurnal and weekly cycles, reflecting the impact of localized traffic emissions and industrial facilities in the neighborhood. Overall, the results demonstrate how distributed sensor networks can reveal the complex spatiotemporal dynamics of combustion-related air pollution within urban neighborhoods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b00282 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFRSC Adv
August 2025
College of Materials Science and Engineering, Jilin University of Chemical Technology Jilin 132022 PR China
To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.
View Article and Find Full Text PDFFood Chem
September 2025
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC. Electronic address:
Diuron (DU), a widely used herbicide, is persistent and toxic, posing serious environmental and health risks. Therefore, the development of advanced sensor materials for the sensitive detection of DU is urgently needed. Here, we present a simple, cost-effective ultrasonic-assisted method to fabricate a high-performance nanocomposite of carbon black (CB) and Ga-liquid metal (GaInSn), which is utilized to modify a carbon electrode (CB/GaInSn/SPCE) for developing an electrochemical sensor for DU detection.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation.
View Article and Find Full Text PDF