98%
921
2 minutes
20
Our earlier work generated a powerful platform technology of polymeric scaffolding of stem cells to investigate and treat the injured or diseased central nervous system. However, the reciprocal sequelae between biophysical properties of the polymer and responses of the stem cell have not been examined in situ in lesioned spinal cords. We postulated that implantable synthetic scaffolds, acting through physical features, might affect donor cell behavior and host tissue remodeling. To test this hypothesis, poly(d,l-lactic-co-glycolic acid) (PLGA) in either low/soft or high/hard rigidity was fabricated for carrying adult human bone marrow mesenchymal stromal stem cells (hMSCs). The construct was transplanted into the epicenter of a rat model of acute T9-10 segmental hemisection to evaluate the effect of PLGA rigidity on the therapeutic potential and fate of hMSCs for neural repair. Compared to controls, only treatment with soft PLGA-scaffolded hMSCs significantly improved sensorimotor function via activation of recovery neurobiology mechanisms. The main benefits included inhibiting neuroinflammation and enhancing tissue protection. Also detected in the treated lesion region were expressions of neurotrophic and anti-inflammatory factors together with proliferation of endogenous neural stem cells, impacts likely derived from hMSCs' functional multipotency maintained by soft PLGA-scaffolding. Conversely, hard rigidity PLGA activated mechanotransduction and mesoderm lineage differentiation of hMSCs that ectopically produced bone, cartilage and muscle markers in neural parenchyma. The findings collectively suggested that the physical texture of polymeric scaffolds should be tailored for sustaining the stemness of hMSCs to constructively interact with the spinal cord for functional restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2019.112980 | DOI Listing |
J Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFRNA Biol
September 2025
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.
Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.
View Article and Find Full Text PDF