98%
921
2 minutes
20
The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660356 | PMC |
http://dx.doi.org/10.1016/j.molcel.2019.05.017 | DOI Listing |
Org Lett
September 2025
College of Chemistry and Chemical Engineering and Luoyang Key Laboratory of Green Synthesis and Photofunctional Materials, Luoyang Normal University, Luoyang, Henan 471934, China.
Inspired by the excellent stereoinduction of palladium catalytic glycosylation with glycals via an inner-sphere pathway, a nickel-catalyzed, stereoselective -aryl glycosylation has been developed for glucals bearing a pentafluorobenzoate (PFB) group at the C3 position. The extremely electron-deficient nature of PFB not only endows stronger activity compared to the traditional leaving groups but also functions as an orientation group, presumably through the strong π-π interactions with the bipyridine ligand coordinated to the nickel center, thereby enabling the β-selective formation of a -aryl glycosidic bond with aryl iodides as glycosyl acceptors under mild conditions. This method features a broad substrate scope, high efficiency, and scalability, providing a general solution to the synthesis of challenging β--glycosides.
View Article and Find Full Text PDFFungal Biol
October 2025
University of Tuscia, Department of Agriculture and Forest Sciences (DAFNE), Via San Camillo de Lellis SNC, Viterbo, Italy.
Fusarium Head Blight (FHB), caused by various Fusarium species, is a major threat to global cereal production. F. avenaceum is an important FHB pathogen producing enniatin mycotoxins.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Artificial starch production from bioreactors is very promising in terms of amylose's broad applications as well as the possibility of addressing food shortage. We previously built an in vitro cellulose-to-starch pathway, synthesizing amylose from non-food cellulose. A challenge of this pathway lies in its low amylose yield due to the fact that only cellobiose in cellulose hydrolysate can be converted into amylose while cellodextrins with a degree of polymerization (DP) ≥ 3 cannot be utilized.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and
Ketonyl -glycosides, a vital subclass of alkyl -glycosides, play essential roles in drug discovery, biochemistry, and materials sciences. However, a practical strategy that merges bench-stable glycosyl donors with styrenes-a ubiquitous class of synthetic building blocks-remains elusive. Herein, we report a simple and general approach for synthesizing ketonyl -glycosides.
View Article and Find Full Text PDFThe glycan distribution on cells is governed by the stochastic activity of different families of enzymes that are together called "glycoEnzymes". These include ~400 gene products or 2% of the proteome, that have recently been curated in an ontology called GlycoEnzOnto. With the goal of making this ontology more accessible to the larger biomedical and biotechnology community, we organized a web resource called GlycoEnzDB, presenting this enzyme classification both in terms of enzyme function and the pathways that they participate in.
View Article and Find Full Text PDF