Super-Resolution Microscopy of Phloem Proteins.

Methods Mol Biol

Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.

Published: March 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Super-resolution microscopy bridges the gap between light and electron microscopy and gives new opportunities for the study of proteins that contribute to phloem function. The established super-resolution techniques are derived from fluorescence microscopy and depend on fluorescent dyes, proteins tagged with GFP variants or fluorochrome-decorated antibodies. Compared with confocal microscopy they improve the resolution between 2.5 and 10 times and, thus, allow a much more precise (co-) localization of membranes, plasmodesmata, and structural proteins. However, they are limited to thin tissue slices rather than intact plant organs and can only show immobilized or only slowly moving targets. Accordingly, the first super-resolution micrographs of the phloem were recorded from fixed tissue which was sectioned using a vibratome or microtome. As with transmission electron microscopy, preparation of phloem tissue for super-resolution microscopy is challenged by the sudden pressures release when dissecting the functional tissue (see Chapter 2 ).This chapter describes a protocol for investigation of proteins in the plasma membranes of sieve elements and companion cells. It illustrates how high-resolution fluorescence imaging can provide information that could not be obtained with confocal or electron microscopy. Further, a brief introduction outlines the theoretical background of super-resolution techniques suitable for phloem imaging and summarizes the findings of the first available super-resolution studies on the phloem. The protocol focusses on the crucial steps for super-resolution microscopy of immunolocalized phloem proteins, adjusted to the use of three-dimensional structured illumination microscopy (3D-SIM).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9562-2_7DOI Listing

Publication Analysis

Top Keywords

super-resolution microscopy
16
electron microscopy
12
microscopy
9
super-resolution
8
phloem proteins
8
super-resolution techniques
8
phloem
7
proteins
6
microscopy phloem
4
proteins super-resolution
4

Similar Publications

Introduction: Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments.

View Article and Find Full Text PDF

A correlation-based tool for quantifying membrane periodic skeleton associated periodicity.

Front Neuroinform

August 2025

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Introduction: The advent of super-resolution microscopy revealed the membrane-associated periodic skeleton (MPS), a specialized neuronal cytoskeletal structure composed of actin rings spaced 190 nm apart by two spectrin dimers. While numerous ion channels, cell adhesion molecules, and signaling proteins have been shown to associate with the MPS, tools for accurate and unbiased quantification of their periodic localization remain scarce.

Methods: We developed Napari-WaveBreaker (https://github.

View Article and Find Full Text PDF

Challenges and limitations of molecular resolution fluorescence imaging.

Methods Appl Fluoresc

September 2025

Department of Biotechnology and Biophysics, University of Würzburg, Department of Biotechnology & Biophysics, Wuerzburg University, Am Hubland, Wuerzburg, other, 97074, GERMANY.

Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging.

View Article and Find Full Text PDF

Turn-on type fluorescent photochromism of a diarylmaleimide-S,S,S',S'-tetraoxide.

Photochem Photobiol Sci

September 2025

Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.

In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.

View Article and Find Full Text PDF

Transcranial ultrasound localization microscopy of the rat brain with ray theory-based aberration correction.

Ultrasonics

August 2025

College of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200438, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China. Electronic address:

Transcranial ultrasound localization microscopy (t-ULM) is faced with challenges posed by the skull, including acoustic attenuation and phase aberrations. There is a significant request for an efficient aberration correction method achieving a great balance between computational complexity and accuracy. In this study, the ray theory is first applied to in-vivo transcranial imaging to calculate the traveltime table in the inhomogeneous medium model of the imaging region.

View Article and Find Full Text PDF