Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gastric cancer is a leading cause of cancer worldwide. Our previous studies showed that aberrant activation of JAK/STAT3 signaling confer epigenetically silences STAT3 target genes in gastric cancer. To further investigate the clinical significance of this phenomenon, we performed Illumina 850K methylation microarray analysis in AGS gastric cancer cells, and cells depleted of STAT3. Integrative computational analysis identified SPG20 as a putative STAT3 epigenetic target, showing promoter hypomethylation in STAT3-depleted AGS cells. Bisulphite pyrosequencing and qRT-PCR confirmed that SPG20 is epigenetically silenced by promoter hypermethylation in a panel of gastric cancer cell lines including AGS cells, but not in immortalized gastric epithelial GES cells. Expression of SPG20 could be restored by the treatment with a DNMT inhibitor, further suggesting that SPG20 is epigenetically silenced by promoter methylation. Clinically, a progressive increase in SPG20 methylation was observed in tissues samples from gastritis (n = 34), to intestinal metaplasia (IM, n = 33), to gastric cancer (n = 53). Importantly, SPG20 methylation could be detected in cell-free DNA isolated from serum samples of gastritis, IM and gastric cancer patients, having a progressive similar to tissues. Taken together, SPG20, a potential STAT3 target, is frequently methylated in gastric cancer, representing a novel noninvasive biomarker for early detection of this deadly disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6564691PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218338PLOS

Publication Analysis

Top Keywords

gastric cancer
32
stat3 target
12
gastric
9
cancer
9
putative stat3
8
spg20
8
biomarker early
8
early detection
8
ags cells
8
spg20 epigenetically
8

Similar Publications

Clinical practice guidelines for esophagogastric junction cancer (EGJ GLs) were published in 2023. In order to evaluate how EGJ GLs have been adopted into clinical practice worldwide and to identify any outstanding clinical questions to be addressed in the next edition, this survey was conducted. An electronic questionnaire was developed.

View Article and Find Full Text PDF

Alterations in the structure of the Golgi apparatus play a pivotal role in cancer progression and invasion. A better understanding of how Golgi morphology regulates the metastatic potential of cancer cells could help identify potential treatment strategies. In this study, we investigated how specific structural variations in the Golgi, particularly fragmentation and condensation, influence the malignancy of gastric cancer using human cell lines, xenograft mouse models, and human patient tissue samples.

View Article and Find Full Text PDF

Expression analysis of C-FOS and XRCC3 Thr241Met polymorphism in gastric cancer.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.

Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.

View Article and Find Full Text PDF

Brucine Inhibits Gastric Cancer via Activation of Ferroptosis Through Regulating the NF-κB Signaling Pathway.

J Biochem Mol Toxicol

September 2025

Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.

Gastric cancer (GC) is the third leading cause of cancer mortality globally, often presenting with insidious symptoms that lead to late-stage diagnoses, underscoring the critical need for innovative diagnostic and therapeutic strategies. One such avenue is the exploration of ferroptosis, a regulated form of cell death implicated in various pathological conditions and malignancies. In this study, we demonstrate that brucine, an alkaloid derived from Strychnos nux-vomica, exerts significant antitumor effects on GC cells both in vitro and in vivo.

View Article and Find Full Text PDF