98%
921
2 minutes
20
Replacing precious water oxidation electrocatalysts used in proton exchange membrane (PEM) water electrolyzers with the nonprecious and abundant electrocatalysts is still a poorly addressed issue in the field of hydrogen generation in acidic medium through water electrolysis. Herein we report such an all-nonprecious binary spinel metal oxide the "cobalt titanate" (CoTiO) as an efficient alternate to expensive IrO and RuO for PEM water electrolyzer. The synthesized CoTiO octahedral nanocrystals of size 50 to 210 nm showed excellent oxygen evolution reaction (OER) activity in 0.5 M HSO, which was comparable to IrO and better than spinel CoO when examined under identical experimental conditions. Overpotential of just 513 mV was sufficient enough to drive a kinetic current density of 10 mA cm, which is a significant figure of merit as far as acidic water oxidation electrocatalysis is concerned.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b00868 | DOI Listing |
iScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFEco Environ Health
September 2025
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.
Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry, University of Guelph Guelph ON N1G 2W1 Canada
In the context of the importance of manganese β-diketonates as precursors for the preparation of manganese oxide thin films and nanostructured materials, we report synthetic protocols and pitfalls encountered in the preparation of a family of Mn(ii) complexes of two fluorinated β-diketonates, 1,1,1-trifluoroacetylacetonato- (tfac) and 1,1,1,5,5,5-hexafluoroacetylacetonato- (hfac). The synthetic conditions and crystal structures of six new complexes are reported, including a coordination polymer {K[Mn(tfac)]}, an unusual trinuclear complex Mn(tfac)(OH), and a series of mononuclear complexes with coordinated solvents tetrahydrofuran, 1,2-dimethoxyethane, water, and acetonitrile. The crystal structures of two known Mn(ii) complexes are also reported for completeness.
View Article and Find Full Text PDFVet World
July 2025
Department of Basic Medical Sciences, Division of Physiology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Arsenic exposure remains a critical global health concern, with growing evidence linking it to significant kidney dysfunction. This review examines the underlying mechanisms of arsenic-induced nephrotoxicity, including oxidative stress, mitochondrial dysfunction, inflammation, and programmed cell death, which collectively contribute to damage in the glomeruli and renal tubules. Chronic exposure is associated with proteinuria, renal impairment, and an increased risk of chronic kidney disease (CKD).
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Herein, we report a simple, microwave-assisted and open-air strategy for gram-scale C3-alkylation of indoles, along with an economically viable strategy for epoxide opening followed by α-alkylation, using the [RuCl(bpy){-PhPCHCONCHPPh-}-κ-(,,,,)] complex (hereafter referred to as [PNP-Ru]). This transformation proceeds an alcohol dehydrogenation (oxidation) mechanism, with water being the sole byproduct in both reactions, underscoring the environmentally benign and sustainable nature of the methodology. The protocol efficiently delivers both mono- and bis(indolyl) derivatives in good to excellent yields.
View Article and Find Full Text PDF