Mesenchymal Stromal Cells Modulate Corneal Alloimmunity via Secretion of Hepatocyte Growth Factor.

Stem Cells Transl Med

Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesenchymal stromal cells (MSCs) are multipotent stem cells that participate in tissue repair and possess considerable immunomodulatory potential. MSCs have been shown to promote allograft survival, yet the mechanisms behind this phenomenon have not been fully defined. Here, we investigate the capacity of MSCs to suppress the allogeneic immune response by secreting the pleiotropic molecule hepatocyte growth factor (HGF). Using an in vivo mouse model of corneal transplantation, we report that MSCs promote graft survival in an HGF-dependent manner. Moreover, our data indicate that topically administered recombinant HGF (a) suppresses antigen-presenting cell maturation in draining lymphoid tissue, (b) limits T-helper type-1 cell generation, (c) decreases inflammatory cell infiltration into grafted tissue, and (d) is itself sufficient to promote transplant survival. These findings have potential translational implications for the development of HGF-based therapeutics. Stem Cells Translational Medicine 2019;8:1030-1040.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766689PMC
http://dx.doi.org/10.1002/sctm.19-0004DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
stromal cells
8
hepatocyte growth
8
growth factor
8
stem cells
8
mscs promote
8
cells
4
cells modulate
4
modulate corneal
4
corneal alloimmunity
4

Similar Publications

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Piezo1 promotes M1 macrophage polarization and impairs osteogenic differentiation in bone infection.

Biochim Biophys Acta Mol Basis Dis

September 2025

Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Xingang Road, Haizhu District, Guangzhou, 510317, PR China; Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Guangzhou, 510515, PR China. Electronic addre

Background: Bone infection induces a strong inflammatory response and leads to impaired bone regeneration, in which macrophages sense mechanistic signals and modulate immune responses in the inflammatory microenvironment through Piezo1. Nonetheless, the regulatory role of Piezo1 in macrophages during bone infection remains elusive.

Methods: Rat models of infected bone defects were established for bulk RNA sequencing and single-cell RNA sequencing.

View Article and Find Full Text PDF