98%
921
2 minutes
20
Mammalian cells rely on complex and highly dynamic networks that respond to environmental stimuli and intracellular signals and maintain homeostasis. The use of synthetic orthogonal circuits for detection of dynamic behaviors has been limited by the remarkable stability of conventional reporters. While providing an appealing feature for signal amplification, the long half-life of reporters such as GFP is typically not ideal to measure transient signals and dynamic behaviors. This chapter explores the use of post-translational regulation for the design of input-dependent circuits that produce output signals with enhanced dynamic range and superior dynamic resolution of the input. Specifically, we report the use of the NanoDeg-a bifunctional system that mediates proteasomal degradation of a cellular target with high specificity and control over rate of decay-to achieve input-dependent depletion of a GFP reporter. Feedforward loop topologies were explored and compared to conventional reporters placed directly under control of the input to identify the ideal circuit architecture that allows placing both the GFP output and the GFP-specific NanoDeg under control of a common input and regulate GFP levels not only through input-dependent transcriptional activation but also input-dependent degradation. The circuit design was implemented experimentally by building a heat-sensitive reporter and exploring the design features that result in detection of the cell response with maximal output dynamic range and dynamic resolution of the heat shock. The method reported provides the design rules of a novel synthetic biology module that will be generally useful to build complex genetic networks for enhanced detection of highly dynamic behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2019.02.013 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.
View Article and Find Full Text PDFJCI Insight
September 2025
Ragon Institute of Mass General Brigham, Cambridge, United States of America.
Background: The SARS-CoV-2 virus has evolved subvariants since the emergence of the omicron variant in 2021. Whether these changes impact viral shedding and transmissibility is not known.
Methods: POSITIVES is a prospective longitudinal cohort of individuals with mild SARS-CoV-2 infection.
Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Indira Gandhi Conservation Monitoring Centre, World Wide Fund-India, New Delhi, 110003, India.
Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.
View Article and Find Full Text PDFNMR Biomed
October 2025
High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.
View Article and Find Full Text PDF