98%
921
2 minutes
20
Background: Quantitative trait locus (QTL) mapping using bulk segregants is an effective approach for identifying genetic variants associated with phenotypes of interest in model organisms. By exploiting next-generation sequencing technology, the QTL mapping accuracy can be improved significantly, providing a valuable means to annotate new genetic variants. However, setting up a comprehensive analysis framework for this purpose is a time-consuming and error-prone task, posing many challenges for scientists with limited experience in this domain.
Results: Here, we present BSA4Yeast, a comprehensive web application for QTL mapping via bulk segregant analysis of yeast sequencing data. The software provides an automated and efficiency-optimized data processing, up-to-date functional annotations, and an interactive web interface to explore identified QTLs.
Conclusions: BSA4Yeast enables researchers to identify plausible candidate genes in QTL regions efficiently in order to validate their genetic variations experimentally as causative for a phenotype of interest. BSA4Yeast is freely available at https://bsa4yeast.lcsb.uni.lu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571488 | PMC |
http://dx.doi.org/10.1093/gigascience/giz060 | DOI Listing |
EMBO J
September 2025
School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.
View Article and Find Full Text PDFPlant Dis
September 2025
South Dakota State University, 2380 Research Parkway, 113B Seed Tech, Brookings, Brookings, South Dakota, United States, 57007;
Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.
View Article and Find Full Text PDFGene
September 2025
Agri Biotech Foundation, Rajendranagar, Hyderabad 500 030 TS, India; Present address, Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea. Electronic address:
This study aimed to identify QTL governing three traits of the resistance against the two planthoppers such as damage score (DS), nymphal survival (NS) and days to wilt (DW) using the 94 RIL population derived from the cross TN1/RP2068 utilizing 125 SSR and 1500 SNP markers. In case of the whitebacked planthopper (WBPH) five major and three minor QTL while for the brown planthopper (BPH) four major and seven minor QTL were identified to be associated with these three traits. Two major QTL, each on chromosomes 1 and 2, were responsible for DS and NS against WBPH accounted for 25% and 16% of the phenotypic variance (PVE).
View Article and Find Full Text PDFInbred lines of , a wild relative of cultivated watermelon, are widely used as rootstocks to control soil-borne diseases for watermelon ( ) production. The most commonly used rootstock, 'Carolina strongback' (Syngenta, Basel, Switzerland) flowers weeks later than commercial watermelon cultivars, which delays the onset of female flowering (DFF) of the scion, leading to an undesirable delay in fruit maturity and harvesting. Understanding the genetics of DFF in a population will facilitate the development of rootstocks with the early flowering habits preferred for commercial production.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Animal Science, Jilin University, Changchun 130062, China.
The number of thoracolumbar vertebrae (NTLV) and the number of ribs (NR) are economically important traits in pigs due to their influence on carcass length and meat yield. Although is an established key gene, it fails to fully account for population-level variation in vertebral count, necessitating a further exploration of its genetic mechanisms. Given the efficacy of crossbred populations in mapping the genetic determinants of phenotypic variation, we analyzed 439 pigs from a Landrace × Yorkshire cross.
View Article and Find Full Text PDF