Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Premise: Third-generation sequencing methods generate significantly longer reads than those produced using alternative sequencing methods. This provides increased possibilities for the study of biodiversity, phylogeography, and population genetics. We developed a protocol for in-solution enrichment hybridization capture of long DNA fragments applicable to complete plastid genomes.

Methods And Results: The protocol uses cost-effective in-house probes developed via long-range PCR and was used in six non-model monocot species (Poaceae: African rice, pearl millet, fonio; and three palm species). DNA was extracted from fresh and silica gel-dried leaves. Our protocol successfully captured long-read plastome fragments (3151 bp median on average), with an enrichment rate ranging from 15% to 98%. DNA extracted from silica gel-dried leaves led to low-quality plastome assemblies when compared to DNA extracted from fresh tissue.

Conclusions: Our protocol could also be generalized to capture long sequences from specific nuclear fragments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526642PMC
http://dx.doi.org/10.1002/aps3.1243DOI Listing

Publication Analysis

Top Keywords

dna extracted
12
sequencing methods
8
capture long
8
extracted fresh
8
silica gel-dried
8
gel-dried leaves
8
long-fragment targeted
4
targeted capture
4
capture long-read
4
long-read sequencing
4

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Niabella insulamsoli sp. nov., Isolated From Soil and Showing Potential Cosmetic Functions with Flexirubin Extract.

Curr Microbiol

September 2025

Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.

A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.

View Article and Find Full Text PDF

The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.

View Article and Find Full Text PDF

Background: To improve the molecular diagnostic yield for Aspergillus spp. from respiratory samples, we developed and evaluated a new DNA extraction method directly from respiratory samples combined with in-house Aspergillus real-time PCR.

Methods: We developed a method using beads and resin, where a sample is centrifuged to separate the supernatant and pellet.

View Article and Find Full Text PDF