A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Climate change will pose challenges to water quality management in the st. Croix River basin. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Responses of streamflow and nutrient export to changing climate conditions should be investigated for effective water quality management and pollution control. Using downscaled climate projections and the Soil and Water Assessment Tool (SWAT), we projected future streamflow, sediment export, and riverine nutrient export in the St. Croix River Basin (SCRB) during 2020-2099. Results show substantial increases in riverine water, sediment, and nutrient load under future climate conditions, particularly under the high greenhouse gas emission scenario. Intensified water cycling and enhanced nutrient export will pose challenges to water quality management and affect multiple Best Management Practices (BMPs) efforts, which are aimed at reducing nutrient loads in SCRB. In addition to the physical impacts of climate change on terrestrial hydrology, our analyses demonstrate significant reductions in ET under elevated atmospheric CO concentrations. Changes in plant physiology induced by climate change may markedly affect water cycling and associated sediment and nutrient export. Results of this study highlight the importance of examining climate change impacts on water and nutrient delivery for effective watershed management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.04.129DOI Listing

Publication Analysis

Top Keywords

climate change
16
nutrient export
16
water quality
12
quality management
12
will pose
8
pose challenges
8
water
8
challenges water
8
croix river
8
river basin
8

Similar Publications