Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic vitreous silica is currently the preferred material for the production of optical fibres because of the several excellent properties of this glass, e.g. high transmission in the visible and IR domains, high mechanical strength, chemical durability, and ease of doping with various materials. For instance, fiber lasers and amplifiers exploit the light amplification properties provided by rare-earth ions employed as dopants in the core of silica-based optical fibers. The structure and composition of the nearest neighbor shell surrounding rare-earth ions in silica-based optical fibers and amplifiers have been intensively debated in the last decade. To reduce aggregation effects between rare-earth ions, co-dopants such as phosphorus and aluminium are added as structural modifiers; phosphorus-doping, in particular, has proved to be very efficient in dissolving rare-earth ions. In this work, we provide further insights concerning the embedding of P atoms into the silica network, which may be relevant for explaining the ease of formation of a phosphorus pentoxide nearest-neighbor shell around a rare-earth dopant. In particular, by means of first-principles calculations, we discuss alternative models for an irradiation (UV, x-, γ-rays) induced paramagnetic center, i.e. the so called room-temperature phosphorus-oxygen-hole center, and its precursors. We report that the most likely precursor of a room-temperature phosphorus-oxygen-hole center comprises of a micro-cluster of a few (at least two) neighboring phosphate tetrahedra, and correspondingly that the occurrence of isolated [(O-)P(=O)] units is unlikely even at low P-doping concentrations. In fact, this work predicts that the symmetric stretching of P=O bonds in isolated [(O-)P(=O)] units appears as a Raman band at a frequency of ~1110 cm, and only by including at least another corner-sharing phosphate tetrahedron, it is shown to shift to higher frequencies (up to ~40 cm) due to the shortening of P=O bonds, thereby leading to an improved agreement with the observed Raman band located at ~1145 cm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509213PMC
http://dx.doi.org/10.1038/s41598-019-42887-3DOI Listing

Publication Analysis

Top Keywords

rare-earth ions
16
silica-based optical
8
optical fibers
8
room-temperature phosphorus-oxygen-hole
8
phosphorus-oxygen-hole center
8
isolated [o-p=o]
8
[o-p=o] units
8
p=o bonds
8
raman band
8
rare-earth
5

Similar Publications

Lutetium (Lu(III)), a heavy rare earth element, plays a critical role in advanced industrial processes and nuclear medicine applications. Given its high economic value and potential environmental risks, the recovery of Lu(III) from medical wastewater is both necessary and urgent. However, previous studies on the adsorption behavior of Lu(III) have been limited by low adsorption capacity, competition from coexisting metal ions, and the influence of environmental temperature.

View Article and Find Full Text PDF

Construction of chitosan/wurtzite multiple sites on mesoporous halloysite and selective removal of Al(III) from rare earth ions solution: Microcalorimetry investigation.

Int J Biol Macromol

September 2025

School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.

Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.

View Article and Find Full Text PDF

In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.

View Article and Find Full Text PDF

Tuning the Anionic Configuration in ASc(PO) ( = Ba, Pb) through A-Site Cationic Coordination Engineering.

Inorg Chem

September 2025

Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.

Rare-earth ions have garnered significant attention due to their large ionic radii and unique electronic configurations. In this study, two scandium-based pyrophosphates, ASc(PO) (A = Ba, Pb), were successfully synthesized by using a high-temperature melting method. They are the first reported examples of divalent cations binding to scandium-based pyrophosphates.

View Article and Find Full Text PDF

Rare-earth ion (Pr, Nd, and Tm)-doped yttrium vanadate (YVO) crystals have aroused great research interest owing to their excellent laser performances. However, the microstructures, which underlie the optical properties of these crystals, are still unclear. In this paper, the stable crystal structures of the YVO:Re (Re = Pr, Nd, and Tm) systems are predicted by using the crystal structure analysis by the particle swarm optimization (CALYPSO) structure search method.

View Article and Find Full Text PDF