Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stomata are the primary gatekeepers for CO uptake for photosynthesis and water loss via transpiration and therefore play a central role in crop performance. Although stomatal conductance ( ) and assimilation rate () are often highly correlated, studies have demonstrated an uncoupling between and that can result in sub-optimal physiological processes in dynamic light environments. Wheat ( L.) is exposed to changes in irradiance due to leaf self-shading, moving clouds and shifting sun angle to which both and respond. However, stomatal responses are generally an order of magnitude slower than photosynthetic responses, leading to non-synchronized and responses that impact CO uptake and water use efficiency ( ). Here we phenotyped a panel of eight wheat cultivars (estimated to capture 80% of the single nucleotide polymorphism variation in North-West European bread wheat) for differences in the speed of stomatal responses (to changes in light intensity) and photosynthetic performance at different stages of development. The impact of water stress and elevated [CO] on stomatal kinetics was also examined in a selected cultivar. Significant genotypic variation was reported for the time constant for stomatal opening ( = 0.038) and the time to reach 95% steady state ( = 0.045). Slow opening responses limited by ∼10% and slow closure reduced , with these impacts found to be greatest in cultivars Soissons, Alchemy and Xi19. A decrease in stomatal rapidity (and thus an increase in the limitation of photosynthesis) ( < 0.001) was found during the post-anthesis stage compared to the early booting stage. Reduced water availability triggered stomatal closure and asymmetric stomatal opening and closing responses, while elevated atmospheric [CO] conditions reduced the time for stomatal opening during a low to high light transition, thus suggesting a major environmental effect on dynamic stomatal kinetics. We discuss these findings in terms of exploiting various traits to develop ideotypes for specific environments, and suggest that intraspecific variation in the rapidity of stomatal responses could provide a potential unexploited breeding target to optimize the physiological responses of wheat to dynamic field conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479173PMC
http://dx.doi.org/10.3389/fpls.2019.00492DOI Listing

Publication Analysis

Top Keywords

stomatal responses
12
stomatal opening
12
stomatal
11
responses
8
stomatal kinetics
8
wheat
5
genotypic developmental
4
developmental environmental
4
environmental effects
4
effects rapidity
4

Similar Publications

Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.

View Article and Find Full Text PDF

Excessive P effects in the growth of Solanum lycopersicum related to stomatal closing mediated by ABA and ethylene.

Plant Sci

September 2025

Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:

Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).

View Article and Find Full Text PDF

Stomatal pores govern the tradeoff between CO₂ assimilation and water loss, and optimizing their performance is critical for crop resilience, particularly under dynamic field environments. Here, we show that overexpression of Triticum aestivum EPIDERMAL PATTERNING FACTOR1 (TaEPF1) in bread wheat (Triticum aestivum) reduces leaf stomatal density in a leaf surface-specific manner, with a greater decline on the abaxial surface than on the adaxial surface. TaEPF1 overexpressors exhibited substantially lower stomatal conductance than wild-type (WT) control plants, which resulted in diffusional constraints limiting photosynthesis when measured under monochromatic red light.

View Article and Find Full Text PDF

The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

September 2025

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.

View Article and Find Full Text PDF

Phosphorylation-dependent activation of MAP4K1/2 by OST1 mediates ABA-induced stomatal closure in Arabidopsis.

J Integr Plant Biol

September 2025

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.

In higher plants, stomatal movements represent a critical physiological process that matains cellular water homestasis while enabling photosynthetic gas exchange. Open stomata 1 (OST1), a key protein kinase in the abscisic acid (ABA) signaling cascade, has been established as a central regulator of stomatal dynamics. This study reveals that two highly conserved mitogen-activated protein kinase 1 (MAP4K1) and MAP4K2 are positive regulators in ABA promoted stomatal closure, and ABA-activated OST1 potentiates MAP4K1/2 through phosphorylation at conserved serine and threonine residues (S166, T170, and S479/S488).

View Article and Find Full Text PDF