Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erz214DOI Listing

Publication Analysis

Top Keywords

plant growth
8
sulfate transporters
8
disentangling complexity
4
complexity diversity
4
diversity crosstalk
4
crosstalk sulfur
4
sulfur mineral
4
mineral nutrients
4
nutrients cultivated
4
cultivated plants
4

Similar Publications

Biodiversity to Breakthroughs: The Promise of Saudi Arabian Medicinal Plants in Antiviral Research.

Appl Biochem Biotechnol

September 2025

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia.

Viruses are minuscule entities that cannot survive independently without a Living host. Pathogenic viruses pose a significant threat to global health, resulting annually in the deaths of thousands of people. Recent studies indicate that medicinal plants may serve as an effective source of sustainable natural antiviral agents.

View Article and Find Full Text PDF

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

The present study aimed to explore the potential of Indian mustard ( L.) for phytoremediation of soil contaminated with ciprofloxacin. The antibiotic ciprofloxacin was selected due to its rapidly increasing presence in soil.

View Article and Find Full Text PDF