Promoter Hypermethylation of Genes Encoding for RASSF/Hippo Pathway Members Reveals Specific Alteration Pattern in Diffuse Gliomas.

J Mol Diagn

UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Cyceron, a Public Interest Group, Normandy University, Caen, France; Department of Anatomy and Pathological Cytology, CHU de Caen, Caen, France; Department of Neuropathology, GHU Paris Psychiatry and Neuroscience, Paris, France.

Published: July 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ras association domain family (RASSF)/Hippo pathway alterations are poorly characterized in diffuse gliomas. We assayed promoter methylation of LATS1/2, MST1(STK4)/MST2(STK3), RASSF1, RASSF2, Nore1A/RASSF5, RASSF6, and RASSF10 genes in 133 diffuse gliomas. The RASSF/Hippo pathway was highly silenced in gliomas, particularly RASSF1A (79.4%) and LATS2 (35.9%). The most frequent combination of promoter hypermethylation of one RASSF gene and one Hippo pathway member's gene was RASSF1/LATS2-coupled hypermethylation [n = 44 (33.08%)]. Hypermethylated profiles were related to IDH mutation, yet not randomly in IDH-mutated gliomas, because LATS2 promoter hypermethylation was more frequent in oligodendroglioma than in astrocytoma. RASSF1 and LATS2 promoter hypermethylation predicted a longer overall survival (OS). Considering hypermethylation of these two promoters, Cox proportional hazard regression analysis categorized the patients into three prognostic groups: i) high risk of death (n = 24; both RASSF1 and LATS2 unmethylated promoters; median OS, 13 months); ii) intermediate risk of death (n = 65; RASSF1 or LATS2 hypermethylated promoter; median OS, 50.5 months; HR = 3.3; 95% CI, 1.6-6.4; P = 0.001); and iii) low risk of death (n = 44; both RASSF1 and LATS2 hypermethylated promoters; median OS, 119 months; HR = 75.1; 95% CI, 3.3-15.1; P = 0.001). We have thus highlighted a simple two-gene (RASSF1/LATS2) methylation signature as a tool to stratify different prognostic groups of patients with diffuse glioma, adding further prognostic information within the IDH-mutated group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2019.03.007DOI Listing

Publication Analysis

Top Keywords

promoter hypermethylation
16
rassf1 lats2
16
rassf/hippo pathway
12
diffuse gliomas
12
risk death
12
lats2 promoter
8
prognostic groups
8
promoters median
8
death n =
8
n = rassf1
8

Similar Publications

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

HIC2 Suppresses Glioblastoma Progression via Transcriptional Repression of SEMA3A and Inhibition of TGF-β Signaling.

Free Radic Biol Med

September 2025

Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China. Electronic address:

Glioblastoma (GBM), the most aggressive primary brain tumor, is associated with dismal clinical outcomes and a critical lack of actionable therapeutic targets. Herein, we report that Hypermethylated in Cancer 2 (HIC2) is significantly downregulated in GBM tissues. In vitro, ectopic overexpression of HIC2 markedly suppresses GBM cell proliferation, invasion, and migration, while in vivo, it substantially inhibits tumor growth and prolongs survival in an orthotopic xenograft model (p < 0.

View Article and Find Full Text PDF

Introduction: Nephropathic cystinosis is a rare genetic disorder characterized by cystine accumulation in lysosomes that causes early renal dysfunction and progressive chronic kidney disease. Although several metabolic pathways, including oxidative stress and inflammation, have been implicated in the progression of renal parenchyma damage, the precise mechanisms driving its progression are not fully understood. Recent studies suggest that epigenetic modifications, particularly DNA methylation (DNAm), play a critical role in the development of chronic kidney disease.

View Article and Find Full Text PDF