Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In uveal melanomas, immune infiltration is a marker of poor prognosis. This work intended to decipher the biological characteristics of intra-tumor immune population, compare it to other established biomarkers and to patients' outcome.

Methods: Primary, untreated, and mainly large uveal melanomas with retinal detachment were analyzed using: transcriptomic profiling (n = 15), RT-qPCR (n = 36), immunohistochemistry (n = 89), Multiplex Ligation-dependent Probe Amplification (MLPA) for copy number alterations (CNA) analysis (n = 89), array-CGH (n = 17), and survival statistics (n = 86).

Results: Gene expression analysis divided uveal melanomas into two groups, according to the IFNγ/STAT1-IRF1 pathway activation. Tumors with IFNγ-signature had poorer prognosis and showed increased infiltration of CD8 T lymphocytes and macrophages. Cox multivariate analyses of immune cell infiltration with MLPA data delineated better prognostic value for three prognostic groups (three-tier stratification) than two (two-tier stratification). CNA-based model comprising monosomy 3, 8q amplification, and LZTS1and NBL1 deletions emerged as the best predictor for disease-free survival. It outperformed immune cell infiltration in receiver operating characteristic curves. The model that combined CNA and immune infiltration defined risk-groups according to the number of DNA alterations. Immune cell infiltration was increased in the high-risk group (73.7%), where it did not correlate with patient survival, while it was associated with poorer outcome in the intermediate risk-group.

Conclusions: High degree of immune cell infiltration occurs in a subset of uveal melanomas, is interferon-gamma-related, and associated with poor survival. It allows for two-tier stratification, which is prognostically less efficient than a three-tier one. The best prognostic stratification is by CNA model with three risk-groups where immune cell infiltration impacts only some subgroups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558590PMC
http://dx.doi.org/10.1002/cam4.2122DOI Listing

Publication Analysis

Top Keywords

immune cell
20
cell infiltration
20
uveal melanomas
16
immune infiltration
12
immune
9
infiltration
9
better prognostic
8
prognostic stratification
8
high-risk group
8
two-tier stratification
8

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

January 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.

View Article and Find Full Text PDF

Immunomodulatory Roles of Tonsil-Derived Mesenchymal Stem Cells.

Crit Rev Immunol

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF