98%
921
2 minutes
20
Larval-derived nutritional reserves are essential in shaping insects' adult fitness. Early larval instars of many Lepidopteran species are often sessile, and the conditions experienced by these larvae are often highly dependent on the mother's oviposition choice. Later larval stages are more mobile and therefore can choose their food whenever alternatives are available. We tested how feeding on a drought-exposed host plant impacts life history in an insect herbivore, and whether the observed responses depended on developmental stage. We used drought to alter host plant quality of the ribwort plantain, , and assessed whether host plant preference of postdiapause larvae and adult females increased their own or their offspring's performance, respectively, in the Glanville fritillary butterfly, . Larval response to drought-exposed host plants varied with developmental stage: early larval stages (prediapause) had decreased survival and body mass on drought-exposed plants, while later larval stages (postdiapause) developed faster, weighed more and had a higher growth rate on the drought-exposed plants. Postdiapause larvae also showed a preference for drought-exposed host plants, i.e. those that increased their performance, but only when fed on well-watered host plants. Adult females, on the other hand, showed an oviposition preference for well-watered plants, hence matching the performance of their prediapause but not their postdiapause offspring. Our results highlight how variation in environmental conditions generates stage-specific responses in insects. Individuals fine-tune their own or their offspring's diet by behavioural adjustments when variation in host plant quality is available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467838 | PMC |
http://dx.doi.org/10.1016/j.anbehav.2019.01.018 | DOI Listing |
Genome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFNPJ Antimicrob Resist
September 2025
Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.
Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Biology, Emory University, Atlanta, GA, USA.
Crowding can result in greater disease transmission, yet crowded hosts may also remove infectious propagules from the environment, thereby lowering the encounter rate and infectious dose received by conspecifics. We combined experimental and modelling work to examine the impact of crowding of butterfly larvae on the per-capita risk of infection by a protozoan that is transmitted via the larval food plant, and the resulting infection load in adult butterflies. We reared larvae at different densities and exposed them to low and high doses of parasites.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.
View Article and Find Full Text PDF