98%
921
2 minutes
20
Imaging the dynamics and behaviors of plasma membranes is at the leading edge of life science research. We report here the development of a universal red-fluorescent probe Chol-PEG-Cy5 for wash-free plasma membrane labelling both and . In aqueous solutions, the fluorescence of Chol-PEG-Cy5 is significantly quenched due to the intermolecular resonance energy transfer (RET) between neighbouring Cy5 moieties; however, upon membrane anchoring, the probes undergo lateral diffusion in lipid bilayers, resulting in weakened RET and turn-on fluorescence emission. We demonstrate that Chol-PEG-Cy5 enables rapid, stable and high-quality cell surface imaging in a variety of mammalian cells. Additionally, with the assistance of three-dimensional (3D) image reconstruction, we achieve for the first time the whole-mount fluorescence imaging of the epidermal cell surfaces of live zebrafish embryos, which cannot be realized by conventional plasma membrane probes due to the presence of the surface-covering mucus barrier. This novel technique encourages us to track the cellular dynamics of the epidermis during embryonic development with 3D visualization. Moreover, we also develop a new method to evaluate the epidermal toxicity of nanomaterials (, gold nanoparticles and graphene oxide nanosheets) toward zebrafish embryos using this fluorescent probe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461115 | PMC |
http://dx.doi.org/10.1039/c8sc04884c | DOI Listing |
Toxicol Sci
September 2025
Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2025
Department of Biological Sciences, Clemson University, Clemson, SC, USA; Clemson University Center for Human Genetics, Greenwood, SC, USA. Electronic address:
Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China.
Corrole-based photosensitizers show great potential for tumor photodynamic therapy (PDT). While their photodynamic activity has been extensively studied at the cellular level, evaluation in mouse xenograft models remains challenging due to prolonged experimental timelines, complex drug administration, and high costs. To address these limitations, we developed a novel hepatocellular carcinoma model using wild-type AB zebrafish embryos as a xenograft platform.
View Article and Find Full Text PDFToxicol Rep
December 2025
Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan.
Zebrafish embryos are widely used in developmental toxicity testing. However, the extent to which genetic background influences susceptibility to teratogenic compounds remains incompletely understood. We here evaluated inter-strain variability in both phenotypic and transcriptomic responses to six model teratogens using five commonly utilized zebrafish strains, AB, TU, RW, WIK, and PET.
View Article and Find Full Text PDFiScience
September 2025
Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
5-Ethynyl-2'-deoxyuridine (EdU) has revolutionized DNA replication and cell cycle analyses through fast, efficient click chemistry detection. However, commercial EdU kits suffer from high costs, proprietary formulations, limited antibody multiplexing capabilities, and difficulties with larger biological specimens. Here, we present OpenEMMU (Open-source EdU Multiplexing Methodology for Understanding DNA replication dynamics), an optimized, affordable, and user-friendly click chemistry platform utilizing off-the-shelf reagents.
View Article and Find Full Text PDF