98%
921
2 minutes
20
The bacterial cell wall plays a crucial role in viability and is an important drug target. In Escherichia coli, the peptidoglycan crosslinking reaction to form the cell wall is primarily carried out by penicillin-binding proteins that catalyse D,D-transpeptidase activity. However, an alternate crosslinking mechanism involving the L,D-transpeptidase YcbB can lead to bypass of D,D-transpeptidation and beta-lactam resistance. Here, we show that the crystallographic structure of YcbB consists of a conserved L,D-transpeptidase catalytic domain decorated with a subdomain on the dynamic substrate capping loop, peptidoglycan-binding and large scaffolding domains. Meropenem acylation of YcbB gives insight into the mode of inhibition by carbapenems, the singular antibiotic class with significant activity against L,D-transpeptidases. We also report the structure of PBP5-meropenem to compare interactions mediating inhibition. Additionally, we probe the interaction network of this pathway and assay beta-lactam resistance in vivo. Our results provide structural insights into the mechanism of action and the inhibition of L,D-transpeptidation, and into YcbB-mediated antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478713 | PMC |
http://dx.doi.org/10.1038/s41467-019-09507-0 | DOI Listing |
Curr Opin Infect Dis
September 2025
Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna.
Purpose Of Review: Sulbactam-durlobactam (SUL-DUR) is a novel β-lactam/β-lactamase inhibitor combination recently approved for carbapenem-resistant Acinetobacter baumannii (CRAB) infections. This review summarizes current knowledge on the optimal use of SUL-DUR, whether administered alone or in combination with carbapenems, particularly imipenem.
Recent Findings: Data from registrational trial demonstrate that SUL-DUR is an effective and well tolerated treatment option for CRAB severe infections.
mSphere
September 2025
Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.
Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Bacterial Resistance Research Laboratory (LABRESIS), Hospital de clínicas de Porto Alegre (HCPA), Experimental Research Center, Porto Alegre, Brazil.
Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.
View Article and Find Full Text PDFIn Silico Pharmacol
September 2025
Medical Sciences Research Center, Ghalib University, Kabul, Afghanistan.
Unlabelled: The rise of β-lactamase-mediated resistance in Gram-negative pathogens has created an urgent need for novel inhibitors to preserve antibiotic efficacy. This study explores the potential of curcumin, a natural polyphenol with known antimicrobial properties, as a broad-spectrum inhibitor of class A serine-β-lactamases (SBLs) through comprehensive computational analysis. Using molecular docking, 200 ns molecular dynamics simulations, and binding energy calculations, we investigated curcumin's interactions with three clinically important SBLs: KPC-3, CTX-M-15, and L2.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Qilu Hospital Qingdao, Cheeloo College of Medicine, Shandong University, Qingdao 266035, China. Electronic address:
The global spread of antimicrobial resistance (AMR) poses a serious threat to public health, with hospital wastewater treatment plants (WWTPs) recognized as a key hotspot for resistant pathogens and antibiotic resistance genes (ARGs). This study employed advanced hybrid sequencing platforms to provide a comprehensive resistomic analysis of a Qingdao WWTP in China, revealing previously uncovered AMR transmission risks. We identified 175 ARG subtypes conferring resistance to 38 antimicrobials, including the last-resort antibiotics, highlighting the extensive and concerning resistance reservoir within this environment.
View Article and Find Full Text PDF