Leukocyte mitochondrial DNA copy number as a potential biomarker indicating poor outcome in biliary atresia and its association with oxidative DNA damage and telomere length.

Mitochondrion

Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand. Electronic address:

Published: July 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biliary atresia (BA) is a chronic obstructive liver disease, leading to advanced liver failure. Mitochondria dysfunction-mediated aberrant telomere length has been implicated in various pathological processes including cholestasis. Herein, we aimed to investigate associations between mitochondrial DNA (mtDNA) copy number, oxidative DNA damage, telomere length, and disease severity in BA patients. mtDNA copy number and relative telomere length (RTL) were assessed using real-time PCR. Circulating 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured using ELISA. Our findings showed that BA patients had significantly lower mtDNA copy number and RTL than healthy controls, whereas plasma 8-OHdG levels were significantly elevated in BA patients. mtDNA copy number was remarkably reduced in advanced BA patients. Furthermore, mtDNA copy number was independently associated with age and degree of liver fibrosis in BA patients. Decreased mtDNA copy number was significantly associated with elevated risks of BA, severe fibrosis, jaundice, and hepatic dysfunction. Low mtDNA copy number can be utilized to distinguish patients with poor-outcome from those with good-outcome. Survival curve analysis revealed that low mtDNA copy number was significantly associated with poor survival of BA patients. Interestingly, there was a positive association between mtDNA copy number and plasma 8-OHdG in BA patients, while a negative association of mtDNA copy number with RTL was observed in BA patients. Alternatively, RTL was negatively correlated with plasma 8-OHdG in BA patients. These data demonstrated relationships between leukocytes mtDNA copy number, oxidative stress, telomere length, and clinical parameters in BA patients. Accordingly, our findings indicate that mtDNA copy number may serve as a potential biomarker reflecting BA severity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2019.04.006DOI Listing

Publication Analysis

Top Keywords

copy number
52
mtdna copy
48
telomere length
20
copy
13
number
13
mtdna
12
patients mtdna
12
plasma 8-ohdg
12
patients
11
mitochondrial dna
8

Similar Publications

Objective: The aim of this study was to determine the diagnostic value of prenatal chromosomal microarray analysis (CMA) for fetuses at high risk for various conditions on chromosomal abnormalities.

Methods: In the study, 8,560 clinical samples were collected from pregnant women between February 2018 and June 2022, including 75 villus, 7,642 amniotic fluid, and 843 umbilical cord blood samples. All samples were screening for chromosomal abnormalities using both CMA and karyotyping.

View Article and Find Full Text PDF

Background: The treatment of critically ill patients in intensive care units is becoming increasingly complex. For example, organ transplants are regularly carried out, the recipients are seriously ill, and the postoperative course can be complicated. This is why organ replacement and hemadsorption procedures are becoming increasingly important.

View Article and Find Full Text PDF

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Introduction: Spinal muscular atrophy (SMA), caused by pathogenic variants in the survival motor neuron (SMN) gene, is the most common genetic cause of mortality in children under the age of two. Prior reports of obstetric sonograms performed in pregnancies with severe forms of fetal SMA have discrepant findings that may stem from a failure to account for the SMN2 copy number.

Methods: We present a neonate diagnosed with SMA type 0 postnatally (0SMN1/1SMN2 genotype).

View Article and Find Full Text PDF

SLICK1 is an allelic variant of the prolactin receptor () that is found in Senepol beef cattle. The presence of a single copy of this allele produces a short hair coat and confers heat tolerance. We aimed to determine the effect of 2 copies of this allele on milking performance of dairy cattle.

View Article and Find Full Text PDF