98%
921
2 minutes
20
We report on a novel way of performing stimulated electron energy-loss and energy-gain spectroscopy (sEELS/sEEGS) experiments that does not require a pulsed gun. In this scheme, a regular scanning transmission electron microscope (STEM) equipped with a conventional continuous electron gun is fitted with a modified EELS detector and a light injector in the object chamber. The modification of the EELS detector allows one to expose the EELS camera during tunable time intervals that can be synchronized with nanosecond laser pulses hitting the sample, therefore allowing us to collect only those electrons that have interacted with the sample under light irradiation. Using ∼ 5 ns laser pulses of ∼ 2 eV photon energy on various plasmonic silver samples, we obtain evidence of sEELS/sEEGS through the emergence of up to two loss and gain peaks in the spectra at ± 2 and ± 4 eV. Because this approach does not involve any modification of the gun, our method retains the original performances of the microscope in terms of energy resolution and spectral imaging with and without light injection. Compared to pulsed-gun techniques, our method is mainly limited to a perturbative regime (typically no more that one gain event per incident electron), which allows us to observe resonant effects, in particular when the plasmon energy of a silver nanostructure matches the laser photon energy. In this situation, EELS and EEGS signals are enhanced in proportion to n+1 and n, respectively, where n is the average plasmon population due to the external illumination. The n term is associated with stimulated loss and gain processes, and the term of 1 corresponds to conventional (spontaneous) loss. The EELS part of the spectrum is therefore an incoherent superposition of spontaneous and stimulated EEL events. This is confirmed by a proper quantum-mechanical description of the electron/light/plasmon system incorporating light-plasmon and plasmon-electron interactions, as well as inelastic plasmon decay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2018.12.011 | DOI Listing |
Front Neurosci
August 2025
Beijing Life Science Academy, Beijing, China.
Hypocretin, also known as orexin, is a hypothalamic neuropeptide that regulates essential physiological processes including arousal, energy metabolism, feeding behavior, and emotional states. Through widespread projections and two G-protein-coupled receptors-HCRT-1R and HCRT-2R-the hypocretin system exerts diverse modulatory effects across the central nervous system. The role of hypocretin in maintaining wakefulness is well established, particularly in narcolepsy type 1 (NT1), where loss of hypocretin neurons leads to excessive daytime sleepiness and cataplexy.
View Article and Find Full Text PDFPLoS One
September 2025
Yale Program for Recovery and Community Health (PRCH), New Haven, Connecticut, United States of America.
Background: Rates of acute myocardial infarction (AMI) morbidity and mortality have increased in young women aged ≤55 years but little is known about their experience recovering from and living with AMI. A personal recovery (experience of an identity shift manifested in both losses and gains) has been reported among general AMI survivors. Our objective was to gain insights into young women's perspectives on long-term post-AMI recovery, under the patient-centered personal recovery framework.
View Article and Find Full Text PDFIntroduction: The ADHEAR is a non-surgical Bone Conduction Device (BCD) that makes use of an adhesive adapter. While clinical trials have demonstrated its efficacy with regards to audiological performance, safety and compliance, data on real-world paediatric cohorts is scarce.
Methods: This retrospective cohort study analysed data from paediatric patients fitted with ADHEAR at a tertiary centre between January 2017 and September 2024.
J Gastroenterol
September 2025
Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
Obesity-associated obstructive sleep apnea (OSA) highlights the need for effective therapies. Hypothalamic endoplasmic reticulum (ER) stress contributes to leptin resistance in obesity. Although hesperidin (HE) modulates ER stress and oxidative pathways, its low bioavailability limits clinical use, its role in OSA is unknown.
View Article and Find Full Text PDF