98%
921
2 minutes
20
Defective viral genomes of the copy-back type (cbDVGs) are the primary initiators of the antiviral immune response during infection with respiratory syncytial virus (RSV) both in vitro and in vivo. However, the mechanism governing cbDVG generation remains unknown, thereby limiting our ability to manipulate cbDVG content in order to modulate the host response to infection. Here we report a specific genomic signal that mediates the generation of a subset of RSV cbDVG species. Using a customized bioinformatics tool, we identified regions in the RSV genome frequently used to generate cbDVGs during infection. We then created a minigenome system to validate the function of one of these sequences and to determine if specific nucleotides were essential for cbDVG generation at that position. Further, we created a recombinant virus unable to produce a subset of cbDVGs due to mutations introduced in this sequence. The identified sequence was also found as a site for cbDVG generation during natural RSV infections, and common cbDVGs originated at this sequence were found among samples from various infected patients. These data demonstrate that sequences encoded in the viral genome determine the location of cbDVG formation and, therefore, the generation of cbDVGs is not a stochastic process. These findings open the possibility of genetically manipulating cbDVG formation to modulate infection outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504078 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1007707 | DOI Listing |
Methods Mol Biol
August 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
Respiratory syncytial virus (RSV) is prone to generating the copy-back type of defective viral genomes (cbDVGs). cbDVGs play crucial roles in RSV pathogenesis by modulating innate immunity and directly interfering with infectious virus replication. Clinically, the timing of cbDVG emergence impacts the severity of RSV infection.
View Article and Find Full Text PDFJ Virol
November 2024
Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
During virus replication in cultured cells, copy-back defective viral genomes (cbDVGs) can arise. CbDVGs are powerful inducers of innate immune responses , but their occurrence and impact on natural infections of human hosts remain poorly defined. We asked whether cbDVGs were generated in the brain of a patient who succumbed to subacute sclerosing panencephalitis (SSPE) about 20 years after acute measles virus (MeV) infection.
View Article and Find Full Text PDFPLoS Pathog
April 2019
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Defective viral genomes of the copy-back type (cbDVGs) are the primary initiators of the antiviral immune response during infection with respiratory syncytial virus (RSV) both in vitro and in vivo. However, the mechanism governing cbDVG generation remains unknown, thereby limiting our ability to manipulate cbDVG content in order to modulate the host response to infection. Here we report a specific genomic signal that mediates the generation of a subset of RSV cbDVG species.
View Article and Find Full Text PDF