98%
921
2 minutes
20
Under controlled laboratory conditions, toxicity data tend to be less variable than in more realistic in-field studies and responses may thus differ from those in the natural environment, creating uncertainty. The validation of data under environmental conditions is therefore a major asset in environmental risk assessment of chemicals. The present study aimed to validate the mode of action of a commercial fungicide formulation in the soil invertebrate F. candida, under more realistic exposure scenarios (in-field bioassay), by targeting specific molecular biomarkers retrieved from laboratory experiments. Organisms were exposed in soil cores under minimally controlled field conditions for 4 days to a chlorothalonil fungicide dosage causing 75% reduction of reproduction in a previous laboratory experiment (127 mg a.i. kg) and half this concentration (60 mg a.i. kg). After exposure, organisms were retrieved and RNA was extracted from each pool of organisms. According to previous laboratorial omics results with the same formulation, ten genes were selected for gene expression analysis by qRT-PCR, corresponding to key genes of affected biological pathways including glutathione metabolism, oxidation-reduction, body morphogenesis, and reproduction. Six of these genes presented a dose-response trend with higher up- or down-regulation with increasing pesticide concentrations. Highly significant correlations between their expression patterns in laboratory and in-field experiments were observed. This work shows that effects of toxicants can be clearly demonstrated in more realistic conditions using validated biomarkers. Our work outlines a set of genes that can be used to assess the early effects of pesticides in a realistic agricultural scenario.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2019.03.073 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
September 2025
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().
View Article and Find Full Text PDFNano Lett
September 2025
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Center for Experimental Teaching, School of Pharmacy, Guangzhou Medical University, Guangzhou, China.
Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.
Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.
Arthritis Care Res (Hoboken)
September 2025
Department of Clincial Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China.