Preparation of low-cost sludge-based mesoporous carbon and its adsorption of tetracycline antibiotics.

Water Sci Technol

Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China E-mail:

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Preparation of sludge-derived mesoporous carbon materials (SMCs) through pyrolysis of excess activated sludge from urban municipal sewage plants is an effective means of reducing pollution and utilizing a waste resource. This paper presented a method of SMC preparation in which calcium oxide (CaO), polyacrylamide (PAM), and chitosan (CAS) flocculating agents were used as pore-forming additives. Physical and chemical characterizations of the prepared SMCs were conducted by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The prepared SMCs were used to adsorb a tetracycline (TC) antibiotic pollutant. The influences of pH, adsorption time, temperature, and pollutant concentration on TC adsorption capacity were determined. The experiments demonstrated that weakly acidic conditions were conducive to TC adsorption, which mainly occurs via electrostatic and π-π interactions. The TC adsorption process by SMCs conformed better to the pseudo-second-order models, indicating that chemical adsorption was the dominant adsorption process. The isothermal adsorption of TC by the SMCs conformed to the Freundlich model. This implied that TC easily adhered onto the SMC surfaces via multilayer homogeneous adsorption. Thermodynamic studies revealed that the adsorption of TC onto SMCs was spontaneous and endothermic.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2019.084DOI Listing

Publication Analysis

Top Keywords

adsorption
10
mesoporous carbon
8
prepared smcs
8
adsorption process
8
smcs conformed
8
adsorption smcs
8
smcs
6
preparation low-cost
4
low-cost sludge-based
4
sludge-based mesoporous
4

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

MXene/PANI/SnO electrochemical sensor for the determination of 4-aminophenol.

Mikrochim Acta

September 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.

An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.

View Article and Find Full Text PDF

Application of lignin extracted from fibers and aminated lignin in anionic dyes contaminated water remediation.

Int J Phytoremediation

September 2025

Department of Fashion and Textile Design, College of Arts and Design, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

In this paper, lignin was chemically extracted from fibers and modified with branched polyethyleneimine (BPEI) and the resulting samples were applied for the adsorption of two anionic dyes; Acid red 183 (AR183) and Acid blue 25 (AB25) from aqueous suspension. Analytical characterization methods including SEM, FT-IR, TGA/DTG, and XRD were used to analyze the studied samples. The images of the extracted lignin displayed a rough feature.

View Article and Find Full Text PDF

A stable sulfate-pillared metal triazolate framework with a gating effect for highly efficient dehydration of bioethanol.

Chem Commun (Camb)

September 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, School of Chemical Engineering & Technology, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Separation of ethanol-water azeotrope is extremely challenging. Here, we design and synthesize a new sulfate-pillared metal triazolate framework, which shows sieving-like separation of water/ethanol. A dynamic breakthrough verified the ultrahigh selectivity (145), and it could produce a record-breaking ethanol productivity (3.

View Article and Find Full Text PDF

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.

View Article and Find Full Text PDF